Hybrid Centralized/Decentralized Control of Bacteria-Based Bio-Hybrid Microrobots

Eric J. Leaman, Brian Geuther, B. Behkam
{"title":"Hybrid Centralized/Decentralized Control of Bacteria-Based Bio-Hybrid Microrobots","authors":"Eric J. Leaman, Brian Geuther, B. Behkam","doi":"10.1109/MARSS.2018.8481144","DOIUrl":null,"url":null,"abstract":"Engineering microrobotic systems using a bio-hybrid approach that couples synthetic materials with live cells is a powerful approach to address some of the challenges in micro/nanotechnology such as providing an on-board power source and efficient means of locomotion. In the last decade, a number of centralized control strategies dependent on native biological mechanisms have been demonstrated; however, decentralized cooperative control of a swarm of bio-hybrid microrobots has not been shown before. In this work, we impart bacteria with engineered biological circuits to facilitate agent-agent communication and enable predictable and robust cooperative control of a network of bacteria-based Biohybrid microrobots. We show a hybrid control strategy wherein a centralized control scheme is used to direct migration and a decentralized control scheme enables the agents to independently coordinate a desired behavior (fluorescent protein expression). We use an experimentally-validated agent-based computational model of the system to demonstrate the utility of the approach. We show that spatial organization plays a significant role in the response dynamics and explore how the system could be tuned for particular applications. The model will serve as an essential tool for predictive design of bio-hybrid microrobotic swarms with a tunable and robust response.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Engineering microrobotic systems using a bio-hybrid approach that couples synthetic materials with live cells is a powerful approach to address some of the challenges in micro/nanotechnology such as providing an on-board power source and efficient means of locomotion. In the last decade, a number of centralized control strategies dependent on native biological mechanisms have been demonstrated; however, decentralized cooperative control of a swarm of bio-hybrid microrobots has not been shown before. In this work, we impart bacteria with engineered biological circuits to facilitate agent-agent communication and enable predictable and robust cooperative control of a network of bacteria-based Biohybrid microrobots. We show a hybrid control strategy wherein a centralized control scheme is used to direct migration and a decentralized control scheme enables the agents to independently coordinate a desired behavior (fluorescent protein expression). We use an experimentally-validated agent-based computational model of the system to demonstrate the utility of the approach. We show that spatial organization plays a significant role in the response dynamics and explore how the system could be tuned for particular applications. The model will serve as an essential tool for predictive design of bio-hybrid microrobotic swarms with a tunable and robust response.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于细菌的生物混合微型机器人的混合集中/分散控制
工程微型机器人系统采用生物混合方法,将合成材料与活细胞结合在一起,这是解决微/纳米技术中一些挑战的有力方法,例如提供机载电源和有效的运动方式。在过去的十年中,已经证明了一些依赖于本地生物机制的集中控制策略;然而,生物混合微型机器人群的分散协同控制尚未出现。在这项工作中,我们将工程生物电路赋予细菌,以促进代理-代理通信,并实现基于细菌的生物混合微型机器人网络的可预测和稳健的合作控制。我们展示了一种混合控制策略,其中集中控制方案用于指导迁移,分散控制方案使代理能够独立协调所需的行为(荧光蛋白表达)。我们使用一个经过实验验证的基于代理的系统计算模型来证明该方法的实用性。我们展示了空间组织在响应动力学中起着重要作用,并探索了如何针对特定应用调整系统。该模型将作为生物混合微机器人群体预测设计的重要工具,具有可调和鲁棒的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright Information Ferrofluid Levitated Micro/Milli-Robots Implementation Scheme of Orbital Refueling Using Microsate IIite Assembly of Cellular Microstructures into Lobule-Like 3D Microtissues Based on Microrobotic Manipulation* Research supported by the Beijing Natural Science Foundation under Grant 4164099and the National Natural Science Foundation of China under grants 61603044and 61520106011. Three Dimensional Microfabrication Using Local Electrophoretic Deposition Assisted with Laser Trapping Controlled by a Spatial Light Modulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1