A Measure of Real-Time Intelligence

Vaibhav Gavane
{"title":"A Measure of Real-Time Intelligence","authors":"Vaibhav Gavane","doi":"10.2478/jagi-2013-0003","DOIUrl":null,"url":null,"abstract":"Abstract We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent’s environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent’s computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jagi-2013-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent’s environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent’s computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时智能的衡量标准
基于智能体的环境可以在智能体执行的任何步骤发生变化的概念,我们为一般强化学习智能体提出了一个新的智能度量。也就是说,一个代理被认为是实时地与其环境交互的。从这个意义上说,由此产生的智力测量比通用智力测量(Legg和Hutter, 2007)和任何时候的通用智力测试(Hernández-Orallo和Dowe, 2010)更普遍。该度量的一个主要优点是,代理的计算复杂性以自然的方式被考虑到度量中。我们证明存在智能任意接近理论最大值的智能体,并且智能体的智能取决于它们的并行处理能力。因此,我们认为该方法可以更好地评价智能体,并为构建具有高智能的实用智能体提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Networks for Modeling Shared Semantic Knowledge Extending Environments to Measure Self-reflection in Reinforcement Learning Measuring Intelligence and Growth Rate: Variations on Hibbard’s Intelligence Measure Feature Reinforcement Learning: Part II. Structured MDPs The Synthesis and Decoding of Meaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1