On Integrating POMDP and Scenario MPC for Planning under Uncertainty – with Applications to Highway Driving

Carl Hynén Ulfsjöö, Daniel Axehill
{"title":"On Integrating POMDP and Scenario MPC for Planning under Uncertainty – with Applications to Highway Driving","authors":"Carl Hynén Ulfsjöö, Daniel Axehill","doi":"10.1109/iv51971.2022.9827005","DOIUrl":null,"url":null,"abstract":"Motion planning and decision-making while considering uncertainty is critical for an autonomous vehicle to safely and efficiently drive on a highway. This paper presents a new combined two-step approach for this problem, where a partially observable Markov decision process (POMDP) is tightly coupled with a scenario model predictive control (SCMPC) step. To generate the scenarios in the SCMPC step, the solution to the POMDP is used together with a novel scenario-reduction procedure, which selects a small representative subset of all scenarios considered in the POMDP. The resulting planner is evaluated in a simulation study where the impact of the two-step approach and the scenario-reduction method is shown.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Motion planning and decision-making while considering uncertainty is critical for an autonomous vehicle to safely and efficiently drive on a highway. This paper presents a new combined two-step approach for this problem, where a partially observable Markov decision process (POMDP) is tightly coupled with a scenario model predictive control (SCMPC) step. To generate the scenarios in the SCMPC step, the solution to the POMDP is used together with a novel scenario-reduction procedure, which selects a small representative subset of all scenarios considered in the POMDP. The resulting planner is evaluated in a simulation study where the impact of the two-step approach and the scenario-reduction method is shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定条件下规划中POMDP和情景MPC的集成及其在公路行驶中的应用
考虑不确定性的运动规划和决策对于自动驾驶汽车在高速公路上安全高效地行驶至关重要。本文提出了一种新的组合两步方法,其中部分可观察马尔可夫决策过程(POMDP)与场景模型预测控制(SCMPC)步骤紧密耦合。为了在SCMPC步骤中生成场景,POMDP的解决方案与一个新的场景缩减过程一起使用,该过程选择POMDP中考虑的所有场景的一个小代表性子集。在模拟研究中评估了结果规划器,其中显示了两步方法和场景简化方法的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1