Implemetation of image classification CNN using multi thread GPU

Seong-Hyeon Han, Kwang-Yeob Lee
{"title":"Implemetation of image classification CNN using multi thread GPU","authors":"Seong-Hyeon Han, Kwang-Yeob Lee","doi":"10.1109/ISOCC.2017.8368904","DOIUrl":null,"url":null,"abstract":"This study implemented an image classification CNN using a multi-thread GPU. For the CNN, the CIFAR10 dataset was used, and the multi-thread GPU had 256 threads. Using the 256 threads limited to each layer, allocation and parallel processing were conducted. The image classification CNN took 807 ms for computation.","PeriodicalId":248826,"journal":{"name":"2017 International SoC Design Conference (ISOCC)","volume":"500 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2017.8368904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This study implemented an image classification CNN using a multi-thread GPU. For the CNN, the CIFAR10 dataset was used, and the multi-thread GPU had 256 threads. Using the 256 threads limited to each layer, allocation and parallel processing were conducted. The image classification CNN took 807 ms for computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多线程GPU的CNN图像分类实现
本研究使用多线程GPU实现了一种图像分类CNN。对于CNN,使用CIFAR10数据集,多线程GPU有256个线程。利用每层限定的256个线程,进行分配和并行处理。图像分类CNN的计算时间为807 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory efficient self guided image filtering A fully-digital phase modulator with phase calibration loop for high data-rate systems Development of SoC virtual platform for IoT terminals based on OneM2M Hardware feasible offset and gain error correction for time-interleaved ADC A design of ultra-low noise LDO using noise reduction network techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1