Detecting Both Machine and Human Created Fake Face Images In the Wild

Shahroz Tariq, Sangyup Lee, Hoyoung Kim, Youjin Shin, Simon S. Woo
{"title":"Detecting Both Machine and Human Created Fake Face Images In the Wild","authors":"Shahroz Tariq, Sangyup Lee, Hoyoung Kim, Youjin Shin, Simon S. Woo","doi":"10.1145/3267357.3267367","DOIUrl":null,"url":null,"abstract":"Due to the significant advancements in image processing and machine learning algorithms, it is much easier to create, edit, and produce high quality images. However, attackers can maliciously use these tools to create legitimate looking but fake images to harm others, bypass image detection algorithms, or fool image recognition classifiers. In this work, we propose neural network based classifiers to detect fake human faces created by both 1) machines and 2) humans. We use ensemble methods to detect GANs-created fake images and employ pre-processing techniques to improve fake face image detection created by humans. Our approaches focus on image contents for classification and do not use meta-data of images. Our preliminary results show that we can effectively detect both GANs-created images, and human-created fake images with 94% and 74.9% AUROC score.","PeriodicalId":263315,"journal":{"name":"Proceedings of the 2nd International Workshop on Multimedia Privacy and Security","volume":"499 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Multimedia Privacy and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3267357.3267367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

Abstract

Due to the significant advancements in image processing and machine learning algorithms, it is much easier to create, edit, and produce high quality images. However, attackers can maliciously use these tools to create legitimate looking but fake images to harm others, bypass image detection algorithms, or fool image recognition classifiers. In this work, we propose neural network based classifiers to detect fake human faces created by both 1) machines and 2) humans. We use ensemble methods to detect GANs-created fake images and employ pre-processing techniques to improve fake face image detection created by humans. Our approaches focus on image contents for classification and do not use meta-data of images. Our preliminary results show that we can effectively detect both GANs-created images, and human-created fake images with 94% and 74.9% AUROC score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在野外检测机器和人类创造的假人脸图像
由于图像处理和机器学习算法的重大进步,创建、编辑和生成高质量图像变得更加容易。然而,攻击者可以恶意使用这些工具创建看起来合法但虚假的图像来伤害他人,绕过图像检测算法或欺骗图像识别分类器。在这项工作中,我们提出了基于神经网络的分类器来检测由1)机器和2)人类创建的假人脸。我们使用集成方法来检测人工合成的假图像,并使用预处理技术来改进人工合成的假人脸图像检测。我们的方法侧重于图像内容进行分类,而不使用图像的元数据。我们的初步结果表明,我们可以有效地检测出人工生成的图像和人工生成的假图像,AUROC得分分别为94%和74.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 2nd International Workshop on Multimedia Privacy and Security Expiring Decisions for Stream-based Data Access in a Declarative Privacy Policy Framework Session details: GDPR Detecting Both Machine and Human Created Fake Face Images In the Wild Session details: Steganography, Steganalysis, and Watermarking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1