Visual Analysis of RIS Data for Endmember Selection

A. Popa, F. Gabrieli, T. Kroes, A. Krekeler, M. Alfeld, B. Lelieveldt, E. Eisemann, T. Höllt
{"title":"Visual Analysis of RIS Data for Endmember Selection","authors":"A. Popa, F. Gabrieli, T. Kroes, A. Krekeler, M. Alfeld, B. Lelieveldt, E. Eisemann, T. Höllt","doi":"10.2312/gch.20221233","DOIUrl":null,"url":null,"abstract":"Reflectance Imaging Spectroscopy (RIS) is a hyperspectral imaging technique used for investigating the molecular composition of materials. It can help identify pigments used in a painting, which are relevant information for art conservation and history. For every scanned pixel, a reflectance spectrum is obtained and domain experts look for pure representative spectra, called endmembers, which could indicate the presence of particular pigments. However, the identification of endmembers can be a lengthy process, which requires domain experts to manually select pixels and visually inspect multiple spectra in order to find accurate endmembers that belong to the historical context of an investigated painting. We propose an integrated interactive visual-analysis workflow, that combines dimensionality reduction and linked visualizations to identify and inspect endmembers. Here, we present initial results, obtained in collaboration with domain experts.","PeriodicalId":203827,"journal":{"name":"Eurographics Workshop on Graphics and Cultural Heritage","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Graphics and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/gch.20221233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Reflectance Imaging Spectroscopy (RIS) is a hyperspectral imaging technique used for investigating the molecular composition of materials. It can help identify pigments used in a painting, which are relevant information for art conservation and history. For every scanned pixel, a reflectance spectrum is obtained and domain experts look for pure representative spectra, called endmembers, which could indicate the presence of particular pigments. However, the identification of endmembers can be a lengthy process, which requires domain experts to manually select pixels and visually inspect multiple spectra in order to find accurate endmembers that belong to the historical context of an investigated painting. We propose an integrated interactive visual-analysis workflow, that combines dimensionality reduction and linked visualizations to identify and inspect endmembers. Here, we present initial results, obtained in collaboration with domain experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于端元选择的RIS数据可视化分析
反射成像光谱学(RIS)是一种用于研究材料分子组成的高光谱成像技术。它可以帮助识别绘画中使用的颜料,这是艺术保护和历史的相关信息。对于每个扫描像素,获得一个反射光谱,领域专家寻找纯粹的代表性光谱,称为端元,它可以指示特定颜料的存在。然而,端元的识别可能是一个漫长的过程,这需要领域专家手动选择像素并视觉检查多个光谱,以便找到属于被调查绘画历史背景的准确端元。我们提出了一个集成的交互式可视化分析工作流,它结合了降维和链接可视化来识别和检查终端成员。在这里,我们展示了与领域专家合作获得的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct Elastic Unrollings of Painted Pottery Surfaces from Sparse Image Sets 3D for Studying Reuse in 19th Century Cairo: the Case of Saint-Maurice Residence Reimagining a 2D Painted Portrait as a Kinetic 3D Sculpture Interactive 3D Artefact Puzzles to Support Engagement Beyond the Museum Environment Riedones3D: a celtic coin dataset for registration and fine-grained clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1