Predicting resource demand profiles by periodicity mining

A. Andrzejak, Mehmet Ceyran
{"title":"Predicting resource demand profiles by periodicity mining","authors":"A. Andrzejak, Mehmet Ceyran","doi":"10.1109/CLUSTR.2004.1392648","DOIUrl":null,"url":null,"abstract":"Summary form only given. Scientific computing clusters, enterprise data centers and grid and utility environments utilize the majority of the world's computing resources. Most of these resources are lightly utilized and offer a vast potential for resource sharing, an economically attractive and increasingly indispensable management option. A prerequisite for automating resource consolidation is modeling and prediction of demand characteristics. We present an approach for long-term demand characteristics prediction based on mining periodicities in historical demand data. In addition to characterizing the regularity of the past demand behavior (and so providing a measure of predictability) we propose a method for predicting probabilistic profiles which describe likely future behavior. The presented algorithms are change-adaptive in the sense that they automatically adjust to new regularities in demand patterns. A case study using data from an enterprise data center evaluates the effectiveness of the technique.","PeriodicalId":123512,"journal":{"name":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2004.1392648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. Scientific computing clusters, enterprise data centers and grid and utility environments utilize the majority of the world's computing resources. Most of these resources are lightly utilized and offer a vast potential for resource sharing, an economically attractive and increasingly indispensable management option. A prerequisite for automating resource consolidation is modeling and prediction of demand characteristics. We present an approach for long-term demand characteristics prediction based on mining periodicities in historical demand data. In addition to characterizing the regularity of the past demand behavior (and so providing a measure of predictability) we propose a method for predicting probabilistic profiles which describe likely future behavior. The presented algorithms are change-adaptive in the sense that they automatically adjust to new regularities in demand patterns. A case study using data from an enterprise data center evaluates the effectiveness of the technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用周期性挖掘预测资源需求曲线
只提供摘要形式。科学计算集群、企业数据中心、网格和公用事业环境利用了世界上大部分的计算资源。这些资源大多数都很少得到利用,提供了资源共享的巨大潜力,这是一种经济上具有吸引力和日益不可或缺的管理选择。自动化资源整合的先决条件是需求特征的建模和预测。提出了一种基于历史需求数据周期挖掘的长期需求特征预测方法。除了描述过去需求行为的规律性(从而提供可预测性的度量)之外,我们还提出了一种预测描述可能的未来行为的概率概况的方法。所提出的算法是自适应变化的,即它们自动调整以适应需求模式的新规律。使用来自企业数据中心的数据的案例研究评估了该技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kerrighed and data parallelism: cluster computing on single system image operating systems Management of grid jobs and data within SAMGrid MPIIMGEN - a code transformer that parallelizes image processing codes to run on a cluster of workstations FTC-Charm++: an in-memory checkpoint-based fault tolerant runtime for Charm++ and MPI Bandwidth-aware co-allocating meta-schedulers for mini-grid architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1