PRNU-based Deepfake Detection

Florian Lugstein, S. Baier, Gregor Bachinger, A. Uhl
{"title":"PRNU-based Deepfake Detection","authors":"Florian Lugstein, S. Baier, Gregor Bachinger, A. Uhl","doi":"10.1145/3437880.3460400","DOIUrl":null,"url":null,"abstract":"As deepfakes become harder to detect by humans, more reliable detection methods are required to fight the spread of fake images and videos. In our work, we focus on PRNU-based detection methods, which, while popular in the image forensics scene, have not been given much attention in the context of deepfake detection. We adopt a PRNU-based approach originally developed for the detection of face morphs and facial retouching, and performed the first large scale test of PRNU-based deepfake detection methods on a variety of standard datasets. We show the impact of often neglected parameters of the face extraction stage on detection accuracy. We also document that existing PRNU-based methods cannot compete with state of the art methods based on deep learning but may be used to complement those in hybrid detection schemes.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

As deepfakes become harder to detect by humans, more reliable detection methods are required to fight the spread of fake images and videos. In our work, we focus on PRNU-based detection methods, which, while popular in the image forensics scene, have not been given much attention in the context of deepfake detection. We adopt a PRNU-based approach originally developed for the detection of face morphs and facial retouching, and performed the first large scale test of PRNU-based deepfake detection methods on a variety of standard datasets. We show the impact of often neglected parameters of the face extraction stage on detection accuracy. We also document that existing PRNU-based methods cannot compete with state of the art methods based on deep learning but may be used to complement those in hybrid detection schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于prnu的Deepfake检测
随着深度造假越来越难以被人类发现,需要更可靠的检测方法来打击虚假图像和视频的传播。在我们的工作中,我们专注于基于prnu的检测方法,尽管在图像取证场景中很流行,但在深度伪造检测的背景下却没有得到太多关注。我们采用了最初开发的基于prnu的人脸形态检测和面部修饰方法,并在各种标准数据集上对基于prnu的深度伪造检测方法进行了首次大规模测试。我们展示了人脸提取阶段经常被忽略的参数对检测精度的影响。我们还记录了现有的基于prnu的方法无法与基于深度学习的最先进方法竞争,但可以用于补充混合检测方案中的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Requirements on Synthetic Fingerprint Images for Biometric Authentication and Forensic Investigations Information Hiding in Cyber Physical Systems: Challenges for Embedding, Retrieval and Detection using Sensor Data of the SWAT Dataset On the Robustness of Backdoor-based Watermarking in Deep Neural Networks Banners: Binarized Neural Networks with Replicated Secret Sharing Meta and Media Data Stream Forensics in the Encrypted Domain of Video Conferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1