ART-2 neural network usage to determine moment of slag discharge during steel teeming process

Y. Eremenko, D. Poleshchenko, A. Glushchenko, Y. Tsygankov, Yu. A. Kovriznich
{"title":"ART-2 neural network usage to determine moment of slag discharge during steel teeming process","authors":"Y. Eremenko, D. Poleshchenko, A. Glushchenko, Y. Tsygankov, Yu. A. Kovriznich","doi":"10.1109/SCM.2017.7970646","DOIUrl":null,"url":null,"abstract":"Using adaptive resonance theory (ART-2) neural network, a method is proposed to process a signal of power spectral density of surface acceleration of a steel ladle protective pipe manipulator in order to determine the moment preceding the slag discharge from the steel ladle. We compare the spectrum amplitude analysis, the power spectrum analysis, and the power spectral density analysis of the vibration signal from the protective pipe manipulator surface to choose the best approach to create training set for an ART-2 network. It is proved by modeling that the neural network is able to determine the teeming process state preceding the slag discharge from the steel ladle under real production conditions. The results of the research prove the effectiveness of using an ART-2 neural network based classifier to solve the considered problem.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Using adaptive resonance theory (ART-2) neural network, a method is proposed to process a signal of power spectral density of surface acceleration of a steel ladle protective pipe manipulator in order to determine the moment preceding the slag discharge from the steel ladle. We compare the spectrum amplitude analysis, the power spectrum analysis, and the power spectral density analysis of the vibration signal from the protective pipe manipulator surface to choose the best approach to create training set for an ART-2 network. It is proved by modeling that the neural network is able to determine the teeming process state preceding the slag discharge from the steel ladle under real production conditions. The results of the research prove the effectiveness of using an ART-2 neural network based classifier to solve the considered problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用ART-2神经网络确定钢水充渣过程的排渣力矩
采用自适应共振理论(ART-2)神经网络,对钢包保护管机械手表面加速度功率谱密度信号进行处理,确定钢包出渣前的时刻。通过对保护管机械手表面振动信号的频谱幅值分析、功率谱分析和功率谱密度分析进行比较,选择最佳的ART-2网络训练集创建方法。通过建模证明,在实际生产条件下,神经网络能够确定钢包排渣前的浇注过程状态。研究结果证明了使用基于ART-2神经网络的分类器来解决所考虑问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy model assessing the index of development of sustainable marketing of the company Bayesian approach in strategic management accounting and audit Comparing of systems of PCB routers Classification of information's uncertainty in system research Applying machine learning techniques to mine ventilation control systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1