Efficient online adaptation with stochastic recurrent neural networks

Daniel Tanneberg, Jan Peters, E. Rückert
{"title":"Efficient online adaptation with stochastic recurrent neural networks","authors":"Daniel Tanneberg, Jan Peters, E. Rückert","doi":"10.1109/HUMANOIDS.2017.8246875","DOIUrl":null,"url":null,"abstract":"Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio-inspired stochastic recurrent neural network. By using the intrinsic motivation signal cognitive dissonance with a mental replay strategy, the robot can learn from few physical interactions and can therefore adapt to novel environments in seconds. We evaluate our online planning and adaptation framework on a KUKA LWR arm. The efficient online adaptation is shown by learning unknown workspace constraints sample-efficient within few seconds while following given via points.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio-inspired stochastic recurrent neural network. By using the intrinsic motivation signal cognitive dissonance with a mental replay strategy, the robot can learn from few physical interactions and can therefore adapt to novel environments in seconds. We evaluate our online planning and adaptation framework on a KUKA LWR arm. The efficient online adaptation is shown by learning unknown workspace constraints sample-efficient within few seconds while following given via points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机递归神经网络的有效在线自适应
自主机器人需要与未知和非结构化环境进行交互。为了在终身学习场景中持续在线适应,他们需要样本效率机制来适应不断变化的环境、约束、任务和能力。本文介绍了一种基于仿生随机递归神经网络的在线运动规划和自适应框架。通过使用内在动机信号认知失调和心理重放策略,机器人可以从很少的物理交互中学习,因此可以在几秒钟内适应新的环境。我们在KUKA LWR臂上评估我们的在线规划和适应框架。通过在几秒钟内学习未知的工作空间约束样本效率来显示有效的在线自适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1