{"title":"Efficient online adaptation with stochastic recurrent neural networks","authors":"Daniel Tanneberg, Jan Peters, E. Rückert","doi":"10.1109/HUMANOIDS.2017.8246875","DOIUrl":null,"url":null,"abstract":"Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio-inspired stochastic recurrent neural network. By using the intrinsic motivation signal cognitive dissonance with a mental replay strategy, the robot can learn from few physical interactions and can therefore adapt to novel environments in seconds. We evaluate our online planning and adaptation framework on a KUKA LWR arm. The efficient online adaptation is shown by learning unknown workspace constraints sample-efficient within few seconds while following given via points.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio-inspired stochastic recurrent neural network. By using the intrinsic motivation signal cognitive dissonance with a mental replay strategy, the robot can learn from few physical interactions and can therefore adapt to novel environments in seconds. We evaluate our online planning and adaptation framework on a KUKA LWR arm. The efficient online adaptation is shown by learning unknown workspace constraints sample-efficient within few seconds while following given via points.