Economic load flow using Lagrange neural network

Mohammad Mohatram, P. Tewari, Nutan Latanath
{"title":"Economic load flow using Lagrange neural network","authors":"Mohammad Mohatram, P. Tewari, Nutan Latanath","doi":"10.1109/SIECPC.2011.5876896","DOIUrl":null,"url":null,"abstract":"This paper proposed an artificial neural network (ANN) approach based on Lagrangian multiplier method (Lagrangian ANN) to solve the problem of economic load flow in a power system. Operational requirements and transmission losses are also taken care by the proposed approach. Power plant operating costs are represented by exponential cost functions. Simulation on a test example with six generating units shows that the proposed method can efficiently and accurately solve the problem of economic load flow.","PeriodicalId":125634,"journal":{"name":"2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIECPC.2011.5876896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposed an artificial neural network (ANN) approach based on Lagrangian multiplier method (Lagrangian ANN) to solve the problem of economic load flow in a power system. Operational requirements and transmission losses are also taken care by the proposed approach. Power plant operating costs are represented by exponential cost functions. Simulation on a test example with six generating units shows that the proposed method can efficiently and accurately solve the problem of economic load flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拉格朗日神经网络的经济负荷流
提出了一种基于拉格朗日乘子法(Lagrangian ANN)的人工神经网络(ANN)方法来解决电力系统的经济潮流问题。所提出的方法还考虑了运行要求和传输损耗。电厂运行成本用指数成本函数表示。六台发电机组的仿真结果表明,该方法能有效、准确地解决经济潮流问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Frequency invariant beamforming using sensor delay line Building energy efficient LR-PON for desert terrain of Saudi Arabia Adaptive UWB-OFDM Synthetic Aperture Radar Analysis of Bus-Invert coding in the presence of correlations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1