Machine Learning Strategies to Analyze Positive or Negative Sentiments in Twitter Texts

Matheus Santos Da Silva, Alisson Rodrigo Santana dos Santos, Charles Vilela de Souza, Cleyton Rodrigues
{"title":"Machine Learning Strategies to Analyze Positive or Negative Sentiments in Twitter Texts","authors":"Matheus Santos Da Silva, Alisson Rodrigo Santana dos Santos, Charles Vilela de Souza, Cleyton Rodrigues","doi":"10.23919/CISTI58278.2023.10211836","DOIUrl":null,"url":null,"abstract":"The task of analyzing people’s emotions and feelings is known as Sentiment Analysis (SA). Currently, several techniques have been used together for extracting and detecting feelings, such as Natural Language Processing (NLP) and Machine Learning (ML) algorithms. The present work aims to reuse and evaluate an intelligent model to analyze positives or negatives in Portuguese texts on Twitter, considering that these feelings can be indicators of depression. Therefore, we have used ML algorithms together with SA and NLP techniques, resulting in an accuracy of 79%.","PeriodicalId":121747,"journal":{"name":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISTI58278.2023.10211836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task of analyzing people’s emotions and feelings is known as Sentiment Analysis (SA). Currently, several techniques have been used together for extracting and detecting feelings, such as Natural Language Processing (NLP) and Machine Learning (ML) algorithms. The present work aims to reuse and evaluate an intelligent model to analyze positives or negatives in Portuguese texts on Twitter, considering that these feelings can be indicators of depression. Therefore, we have used ML algorithms together with SA and NLP techniques, resulting in an accuracy of 79%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习策略分析推特文本中的积极或消极情绪
分析人们的情绪和感受的任务被称为情绪分析(SA)。目前,有几种技术被用于提取和检测情感,如自然语言处理(NLP)和机器学习(ML)算法。目前的工作旨在重用和评估一个智能模型来分析Twitter上葡萄牙语文本的积极或消极,考虑到这些感受可能是抑郁的指标。因此,我们将ML算法与SA和NLP技术结合使用,准确率达到79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Stochastic SEIR Model for the COVID-19 Post-Pandemic Scenario Possibility of building a fuzzy epistemology from fuzzy logic presuppositions Act Against the Aggression : A Preliminary Model of a Digital Platform Aimed at Cyberaggressions in the Portuguese University Environment Performability Model for the Medium Priority Transport Systems Predicting Low Birth Weight Using Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1