Learning Based Framework for Joint Task Allocation and System Design in Stochastic Multi-UAV Systems

Inwook Kim, J. R. Morrison
{"title":"Learning Based Framework for Joint Task Allocation and System Design in Stochastic Multi-UAV Systems","authors":"Inwook Kim, J. R. Morrison","doi":"10.1109/ICUAS.2018.8453318","DOIUrl":null,"url":null,"abstract":"We consider a system of UAVs, depots, service stations and tasks in a stochastic environment. Our goal is to jointly determine the system resources (system design), task allocation and waypoint selection. To our knowledge, none have studied this joint decision problem in the stochastic context. We formulate the problem as a Markov decision process (MDP) and resort to deep reinforcement learning (DRL) to obtain state-based decisions. Numerical studies are conducted to assess the performance of the proposed approach. In small examples for which an optimal policy can be found, the DRL based approach is much faster than value iteration and obtained nearly optimal solutions. In large examples, the DRL based approach can find efficient designs and policies.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider a system of UAVs, depots, service stations and tasks in a stochastic environment. Our goal is to jointly determine the system resources (system design), task allocation and waypoint selection. To our knowledge, none have studied this joint decision problem in the stochastic context. We formulate the problem as a Markov decision process (MDP) and resort to deep reinforcement learning (DRL) to obtain state-based decisions. Numerical studies are conducted to assess the performance of the proposed approach. In small examples for which an optimal policy can be found, the DRL based approach is much faster than value iteration and obtained nearly optimal solutions. In large examples, the DRL based approach can find efficient designs and policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的随机多无人机系统联合任务分配与系统设计框架
我们考虑一个随机环境下由无人机、仓库、服务站和任务组成的系统。我们的目标是共同确定系统资源(系统设计)、任务分配和路点选择。据我们所知,还没有人研究过随机环境下的联合决策问题。我们将问题表述为马尔可夫决策过程(MDP),并采用深度强化学习(DRL)来获得基于状态的决策。数值研究进行了评估所提出的方法的性能。在可以找到最优策略的小示例中,基于DRL的方法比值迭代快得多,并且获得了接近最优的解。在大型示例中,基于DRL的方法可以找到有效的设计和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization and Optimal Trajectory Generation for a Compact Aerial Manipulation System with a Delta-type Parallel Robot Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning Nonlinear Flight Control Design for Maneuvering Flight of Quadrotors in High Speed and Large Acceleration Integrated Navigation Based on DME+VOR/INS Under the Integrated Radio Condition Vision-based Integrated Navigation System and Optimal Allocation in Formation Flying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1