Automatic mood classification of Indonesian tweets using linguistic approach

Viktor Wijaya, Alva Erwin, M. Galinium, W. Muliady
{"title":"Automatic mood classification of Indonesian tweets using linguistic approach","authors":"Viktor Wijaya, Alva Erwin, M. Galinium, W. Muliady","doi":"10.1109/ICITEED.2013.6676208","DOIUrl":null,"url":null,"abstract":"Research concerning Twitter mining becomes an interesting research topic recently. It is proven by numerous number of published paper related with this topic. This research is intended to develop a prototype system for classifying Indonesian language tweets. The prototype includes preprocessing step, main information retrieval and classification system. This research proposes a system that uses grammatical rule for retrieving main information from the tweet, and then classifies the information to the suitable mood space. The classification algorithm, which is used, is lexicon based classifier. The proposed classification system has 53.67% accuracy for classifying tweets into 12 mood spaces and 75% accuracy for classifying tweets into 4 mood spaces. As the comparison, the same dataset is also classified using SVM and Naïve Bayes.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Research concerning Twitter mining becomes an interesting research topic recently. It is proven by numerous number of published paper related with this topic. This research is intended to develop a prototype system for classifying Indonesian language tweets. The prototype includes preprocessing step, main information retrieval and classification system. This research proposes a system that uses grammatical rule for retrieving main information from the tweet, and then classifies the information to the suitable mood space. The classification algorithm, which is used, is lexicon based classifier. The proposed classification system has 53.67% accuracy for classifying tweets into 12 mood spaces and 75% accuracy for classifying tweets into 4 mood spaces. As the comparison, the same dataset is also classified using SVM and Naïve Bayes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语言学方法的印尼语微博情绪自动分类
关于Twitter挖掘的研究最近成为一个有趣的研究课题。这已被大量与该主题相关的已发表论文所证明。本研究旨在开发一个分类印尼语推文的原型系统。原型包括预处理步骤、主要信息检索和分类系统。本研究提出了一种利用语法规则从推文中检索主要信息,然后将信息分类到合适的语气空间的系统。所使用的分类算法是基于词典的分类器。本文提出的分类系统将推文分类为12个情绪空间的准确率为53.67%,将推文分类为4个情绪空间的准确率为75%。作为对比,同样的数据集也使用SVM和Naïve贝叶斯进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal unit commitment solution using genetic algorithm combined with the principle of tabu search and priority list method Using estimated arithmetic means of accuracies to select features for face-based gender classification Analysis of factors influencing the mobile technology acceptance for library information services: Conceptual model News recommendation in Indonesian language based on user click behavior A kinetic energy-based feature for unsupervised motion clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1