Robust Wi-Fi indoor localization with KPCA feature extraction of dual band signals

Linsheng Zhao, Hongpeng Wang, Jiarui Wang, Haiming Gao, Jingtai Liu
{"title":"Robust Wi-Fi indoor localization with KPCA feature extraction of dual band signals","authors":"Linsheng Zhao, Hongpeng Wang, Jiarui Wang, Haiming Gao, Jingtai Liu","doi":"10.1109/ROBIO.2017.8324533","DOIUrl":null,"url":null,"abstract":"Indoor localization system based Wi-Fi received signal strength (RSS) has gained popularity in recent years, as wireless local area networks and Wi-Fi enabled mobile devices are pervasive penetration. Unfortunately, the Wi-Fi RSS measurements are susceptible by device heterogeneity, multipath and signal noise, etc. To remedy these problems, we propose a robust Wi-Fi fingerprint-based indoor localization system. The proposed algorithm extract a robust positioning feature from Wi-Fi signals in both 2.4 GHz band and 5 GHz band by kernel principal component analysis (KPCA). Furthermore, we utilize Wi-Fi signal selection algorithm and coarse localization scheme for increasing localization accuracy and reducing the computational burden. Finally, the weighted k nearest neighbor method (WKNN) is used to obtain the estimated location. The proposed system implemented in a realistic indoor Wi-Fi environment, and results indicate that it is efficient in improving the positioning performance.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Indoor localization system based Wi-Fi received signal strength (RSS) has gained popularity in recent years, as wireless local area networks and Wi-Fi enabled mobile devices are pervasive penetration. Unfortunately, the Wi-Fi RSS measurements are susceptible by device heterogeneity, multipath and signal noise, etc. To remedy these problems, we propose a robust Wi-Fi fingerprint-based indoor localization system. The proposed algorithm extract a robust positioning feature from Wi-Fi signals in both 2.4 GHz band and 5 GHz band by kernel principal component analysis (KPCA). Furthermore, we utilize Wi-Fi signal selection algorithm and coarse localization scheme for increasing localization accuracy and reducing the computational burden. Finally, the weighted k nearest neighbor method (WKNN) is used to obtain the estimated location. The proposed system implemented in a realistic indoor Wi-Fi environment, and results indicate that it is efficient in improving the positioning performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于KPCA特征提取的双频信号鲁棒Wi-Fi室内定位
近年来,随着无线局域网和支持Wi-Fi的移动设备的普及,基于Wi-Fi接收信号强度(RSS)的室内定位系统得到了广泛的应用。不幸的是,Wi-Fi RSS测量容易受到设备异质性、多径和信号噪声等因素的影响。为了解决这些问题,我们提出了一种基于Wi-Fi指纹的室内定位系统。该算法通过核主成分分析(KPCA)从2.4 GHz和5 GHz频段的Wi-Fi信号中提取鲁棒定位特征。此外,我们利用Wi-Fi信号选择算法和粗定位方案来提高定位精度和减少计算负担。最后,利用加权k近邻法(WKNN)得到估计位置。该系统在真实的室内Wi-Fi环境中实现,结果表明该系统有效地提高了定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Respiratory simulator for robotic respiratory tract treatments Mimicking fly motion tracking and fixation behaviors with a hybrid visual neural network A smooth position-force controller for asbestos removal manipulator A robotized interior work process planning algorithm based on surface minimum coverage set Towards adaptive power consumption estimation for over-actuated unmanned vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1