{"title":"Taxi destination prediction based on LSTM with tree memory module","authors":"Dan Song, Yadong Li, Meng-Yun Zhang, Ting Zhang","doi":"10.1117/12.2667488","DOIUrl":null,"url":null,"abstract":"Taxi destination prediction can grasp the flow direction of the taxi, facilitate the taxi dispatches. There has always been a long-term dependency problem in taxi trajectory prediction. Although LSTM can solve the long-term dependency problem to a certain extent, it does not have a good ability to deal with the deep correlation between long trajectory sequences. To address the above problem, we propose a taxi destination prediction method based on LSTM with Tree Memory Module (TMM-LSTM). TMM-LSTM stores the state of the input trajectory through an external memory structure. It uses a tree structure to process more historical information and better deal with the long-term relationship between trajectory points. TMM-LSTM can better solve the long-term dependency problem in the taxi trajectory sequence. Experiments demonstrate that the average error distance is 6% lower than traditional LSTM model.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Taxi destination prediction can grasp the flow direction of the taxi, facilitate the taxi dispatches. There has always been a long-term dependency problem in taxi trajectory prediction. Although LSTM can solve the long-term dependency problem to a certain extent, it does not have a good ability to deal with the deep correlation between long trajectory sequences. To address the above problem, we propose a taxi destination prediction method based on LSTM with Tree Memory Module (TMM-LSTM). TMM-LSTM stores the state of the input trajectory through an external memory structure. It uses a tree structure to process more historical information and better deal with the long-term relationship between trajectory points. TMM-LSTM can better solve the long-term dependency problem in the taxi trajectory sequence. Experiments demonstrate that the average error distance is 6% lower than traditional LSTM model.