Low Power Computing and Simultaneous Electro-Optical/Radar Data Processing using IBM’s NS16e 16-chip Neuromorphic Hardware

Mark D. Barnell, Courtney Raymond, Daniel Brown, Matthew Wilson, Éric Côté
{"title":"Low Power Computing and Simultaneous Electro-Optical/Radar Data Processing using IBM’s NS16e 16-chip Neuromorphic Hardware","authors":"Mark D. Barnell, Courtney Raymond, Daniel Brown, Matthew Wilson, Éric Côté","doi":"10.1109/HPEC.2019.8916311","DOIUrl":null,"url":null,"abstract":"For the first time ever, advanced machine learning (ML) compute architectures, techniques, and methods were demonstrated on United States Geological Survey (USGS) optical imagery and Department of Defense (DoD) Synthetic Aperture Radar (SAR) imagery, simultaneously, using IBM’s new NS16e neurosynaptic processor board comprised of 16 TrueNorth chips. The Air Force Research Laboratory (AFRL) Information Directorate Advanced Computing and Communications Division continues to develop and demonstrate new bio-inspired computing algorithms and architectures, designed to provide advanced, ultra-low power, ground and airborne High-Performance Computing (HPC) solutions to meet operational and tactical, real-time processing needs for Intelligence, Surveillance, and Reconnaissance (ISR) missions on small form factor hardware, and in Size, Weight and Power (SWaP) constrained environments. With an average throughput of 16,000 inferences per second, the system provided a processing efficiency of 1,066 inferences per Watt. The NS16e power utilization never exceeded 15 Watts for this application. The contribution of power consumption from TrueNorth processors was bound to less than 5.5 Watts.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time ever, advanced machine learning (ML) compute architectures, techniques, and methods were demonstrated on United States Geological Survey (USGS) optical imagery and Department of Defense (DoD) Synthetic Aperture Radar (SAR) imagery, simultaneously, using IBM’s new NS16e neurosynaptic processor board comprised of 16 TrueNorth chips. The Air Force Research Laboratory (AFRL) Information Directorate Advanced Computing and Communications Division continues to develop and demonstrate new bio-inspired computing algorithms and architectures, designed to provide advanced, ultra-low power, ground and airborne High-Performance Computing (HPC) solutions to meet operational and tactical, real-time processing needs for Intelligence, Surveillance, and Reconnaissance (ISR) missions on small form factor hardware, and in Size, Weight and Power (SWaP) constrained environments. With an average throughput of 16,000 inferences per second, the system provided a processing efficiency of 1,066 inferences per Watt. The NS16e power utilization never exceeded 15 Watts for this application. The contribution of power consumption from TrueNorth processors was bound to less than 5.5 Watts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用IBM的NS16e 16芯片神经形态硬件的低功耗计算和同步光电/雷达数据处理
先进的机器学习(ML)计算架构、技术和方法首次在美国地质调查局(USGS)光学图像和国防部(DoD)合成孔径雷达(SAR)图像上同时展示,使用IBM的新型NS16e神经突触处理器板,该处理器板由16个TrueNorth芯片组成。美国空军研究实验室(AFRL)信息理事会高级计算和通信部门继续开发和演示新的生物启发计算算法和架构,旨在提供先进、超低功耗、地面和机载高性能计算(HPC)解决方案,以满足情报、监视和侦察(ISR)任务在小尺寸硬件上的作战和战术实时处理需求。重量和功率(SWaP)受限的环境。该系统的平均吞吐量为每秒16,000次推理,处理效率为每瓦特1,066次推理。在此应用中,NS16e的功率利用率从未超过15瓦。TrueNorth处理器的功耗贡献将低于5.5瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1