Demonstration of a Limited Scope Probabilistic Risk Assessment for Autonomous Warehouse Robots With OpenPRA

Philipp Grimmeisen, Artur Karimov, M. Diaconeasa, A. Morozov
{"title":"Demonstration of a Limited Scope Probabilistic Risk Assessment for Autonomous Warehouse Robots With OpenPRA","authors":"Philipp Grimmeisen, Artur Karimov, M. Diaconeasa, A. Morozov","doi":"10.1115/imece2021-69998","DOIUrl":null,"url":null,"abstract":"\n Probabilistic Risk Assessment (PRA) is an indispensable technology to evaluate the risk, dependability, and resilience characteristics of safety-critical systems. Therefore, PRA uses widely adopted methods, such as classical event trees, fault trees, Markov chains, Bayesian networks, and their numerous combinations. To analyze challenging failure scenarios of modern, intelligent, autonomous, and highly dynamic Cyber-Physical Systems (CPS), the integration of multiple PRA methods is needed. This paper presents a PRA approach based on classical Event Tree Analysis (ETA) and Fault Tree Analysis (FTA) and provides the technical description of a new open-source software platform called OpenPRA. Besides, this paper describes a representative case study from the autonomous system domain, focusing on autonomous warehouse robots.","PeriodicalId":146533,"journal":{"name":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Probabilistic Risk Assessment (PRA) is an indispensable technology to evaluate the risk, dependability, and resilience characteristics of safety-critical systems. Therefore, PRA uses widely adopted methods, such as classical event trees, fault trees, Markov chains, Bayesian networks, and their numerous combinations. To analyze challenging failure scenarios of modern, intelligent, autonomous, and highly dynamic Cyber-Physical Systems (CPS), the integration of multiple PRA methods is needed. This paper presents a PRA approach based on classical Event Tree Analysis (ETA) and Fault Tree Analysis (FTA) and provides the technical description of a new open-source software platform called OpenPRA. Besides, this paper describes a representative case study from the autonomous system domain, focusing on autonomous warehouse robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于OpenPRA的自主仓库机器人有限范围概率风险评估论证
概率风险评估(PRA)是评估安全关键系统的风险、可靠性和弹性特性不可或缺的技术。因此,PRA采用了经典的事件树、故障树、马尔可夫链、贝叶斯网络及其多种组合等被广泛采用的方法。为了分析现代、智能、自主和高度动态的信息物理系统(CPS)的具有挑战性的故障场景,需要集成多种PRA方法。本文提出了一种基于经典事件树分析(ETA)和故障树分析(FTA)的PRA方法,并提供了一种新的开源软件平台OpenPRA的技术描述。此外,本文还描述了一个自主系统领域的代表性案例研究,重点是自主仓库机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Software to Evaluate Frisbee Movement An Imperfect Usage-Based Preventive Maintenance Planning Model for Railway Track Superstructures Development of Algorithms for Improving Fiber-Optical Rail Circuit on Railway Spans Design, Modeling, and Fabrication of a Ventilator Prototype - A Successful Student Project Story An Overview of the Research Landscape in the Field of Safe Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1