Automated Seizure Detection using Theta Band

Nasmin Jiwani, Ketan Gupta, Neda Afreen
{"title":"Automated Seizure Detection using Theta Band","authors":"Nasmin Jiwani, Ketan Gupta, Neda Afreen","doi":"10.1109/ESCI53509.2022.9758331","DOIUrl":null,"url":null,"abstract":"The EEG signal is made up of numerous frequency bands that characterize human behaviours like emotion, attentiveness, and sleep status, among others. In order to detect epileptical seizures, categorization based on discrete EEG segments is required. The performance of the theta band in an EEG signal is analyzed with the Short-Time Fourier Transform (STFT). It also analyses different categorization methodologies, demonstrating that some classification algorithms achieve extremely high accuracy. The analysis was done in stages, with STFT, theta frequency band extraction, statistical feature extraction, and then classification using LightGBM and Catboost classifier at the end. STFT is used in this study to extract statistical properties from 2-dimensional data and classify epilepsy in the low frequency range. The proposed LightGBM and CatBoost classifier got 98.33% accuracy.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The EEG signal is made up of numerous frequency bands that characterize human behaviours like emotion, attentiveness, and sleep status, among others. In order to detect epileptical seizures, categorization based on discrete EEG segments is required. The performance of the theta band in an EEG signal is analyzed with the Short-Time Fourier Transform (STFT). It also analyses different categorization methodologies, demonstrating that some classification algorithms achieve extremely high accuracy. The analysis was done in stages, with STFT, theta frequency band extraction, statistical feature extraction, and then classification using LightGBM and Catboost classifier at the end. STFT is used in this study to extract statistical properties from 2-dimensional data and classify epilepsy in the low frequency range. The proposed LightGBM and CatBoost classifier got 98.33% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Theta波段的自动癫痫检测
脑电图信号由许多频带组成,这些频带表征了人类的行为,如情绪、注意力和睡眠状态等。为了检测癫痫发作,需要基于离散脑电图片段的分类。利用短时傅里叶变换(STFT)分析了脑电图信号中θ波段的性能。分析了不同的分类方法,证明了一些分类算法达到了极高的准确率。分析分阶段进行,首先进行STFT、theta频带提取、统计特征提取,最后使用LightGBM和Catboost分类器进行分类。本研究使用STFT从二维数据中提取统计性质,并在低频范围内对癫痫进行分类。提出的LightGBM和CatBoost分类器准确率达到98.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Response Mechanism in Vehicular Cooperative Caching for C-V2X Networks A Modified Multiband Antenna for 5G Communication Deep Learning-Based Comparative Study to Detect Polyp Removal in Endoscopic Images A Multiple Stage Deep Learning Model for NID in MANETs Automated Diagnosis of Pneumonia through Capsule Network in conjunction with ResNet50v2 model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1