Biodegradable Humidity Actuators for Sustainable Soft Robotics using Deliquescent Hydrogels

A. Keller, Qiukai Qi, Yogeenth Kumaresan, A. Conn, J. Rossiter
{"title":"Biodegradable Humidity Actuators for Sustainable Soft Robotics using Deliquescent Hydrogels","authors":"A. Keller, Qiukai Qi, Yogeenth Kumaresan, A. Conn, J. Rossiter","doi":"10.1109/RoboSoft55895.2023.10122093","DOIUrl":null,"url":null,"abstract":"Intelligent materials offer new avenues when designing sustainable robotics as they allow for the creation of dynamic constructs which react autonomously to changes in the environment, such as humidity. Here we present a novel humidity actuator which exploits the unique property of deliquescent salts to allow for the spontaneous rehydration of hydrogels in ambient environments. By soaking a 2% w/v alginate, 3% w/v Agar composite in 1M calcium chloride, an intelligent humidity-driven actuator was developed. The hydrogel was able to gain 73.8±7.1% of its weight from a dehydrated state in just 6 hours through water absorption from ambient air. Using this novel formulation, linear and bilayer bending actuators were constructed. In addition to this, a biodegradable deliquescence-actuated artificial flower was demonstrated, highlighting this material's potential to act as an intelligent humidity actuator for the construction of environmentally-reactive biomimetic sustainable robotics.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent materials offer new avenues when designing sustainable robotics as they allow for the creation of dynamic constructs which react autonomously to changes in the environment, such as humidity. Here we present a novel humidity actuator which exploits the unique property of deliquescent salts to allow for the spontaneous rehydration of hydrogels in ambient environments. By soaking a 2% w/v alginate, 3% w/v Agar composite in 1M calcium chloride, an intelligent humidity-driven actuator was developed. The hydrogel was able to gain 73.8±7.1% of its weight from a dehydrated state in just 6 hours through water absorption from ambient air. Using this novel formulation, linear and bilayer bending actuators were constructed. In addition to this, a biodegradable deliquescence-actuated artificial flower was demonstrated, highlighting this material's potential to act as an intelligent humidity actuator for the construction of environmentally-reactive biomimetic sustainable robotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用潮解水凝胶的可持续软机器人的可生物降解湿度驱动器
智能材料为设计可持续机器人提供了新的途径,因为它们允许创建动态结构,这些结构可以自主地对环境变化做出反应,例如湿度。在这里,我们提出了一种新的湿度致动器,它利用潮解盐的独特性质,允许水凝胶在环境中自发再水化。将2% w/v海藻酸盐、3% w/v琼脂复合材料浸泡在1M氯化钙中,研制了一种智能湿度驱动致动器。通过从周围空气中吸收水分,水凝胶能够在短短6小时内从脱水状态中增加73.8±7.1%的重量。利用该新公式,构造了线性和双层弯曲致动器。除此之外,还展示了一种可生物降解的潮解驱动人工花,突出了这种材料作为智能湿度驱动器的潜力,用于构建环境反应型仿生可持续机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Modular Bio-inspired Robotic Hand with High Sensitivity Sensorizing a Compression Sleeve for Continuous Pressure Monitoring and Lymphedema Treatment Using Pneumatic or Resistive Sensors Fabrication and Characterization of a Passive Variable Stiffness Joint based on Shear Thickening Fluids A Soft Wearable Robot to Support Scapular Adduction and Abduction for Respiratory Rehabilitation Design of 3D-Printed Continuum Robots Using Topology Optimized Compliant Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1