Driver fatigue Detection using Approximate Entropic of steering wheel angle from Real driving Data

Zuojin Li, S. Li, Renjie Li, B. Cheng, Jinliang Shi
{"title":"Driver fatigue Detection using Approximate Entropic of steering wheel angle from Real driving Data","authors":"Zuojin Li, S. Li, Renjie Li, B. Cheng, Jinliang Shi","doi":"10.2316/Journal.206.2017.3.206-4972","DOIUrl":null,"url":null,"abstract":"This paper presents a steering-wheel-angle-based driver fatigue detection method for real driving conditions. This method extracts approximate entropy (ApEn) feature from recorded steering wheel angle (SWA) signal with a decision-tree-like classifier to identify the driving fatigue level. ApEn is extracted from fixed-size sliding window on real-time SWA series. To further exploit the in-depth information of SWA, additional features including intervalpercentage, deviation, kurtosis and complexity value of ApEn are extracted and applied to the designed classifier. The experiment is set on 14.68 h of real road driving, the collected data has been segmented into three fatigue levels (“awake , “drowsy , “very drowsy ). The classification result showed that the proposed method achieves an averaged accuracy of 82.07%. These results confirm that the proposed method is effective in the detection of real-time driver fatigue.","PeriodicalId":206015,"journal":{"name":"Int. J. Robotics Autom.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/Journal.206.2017.3.206-4972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a steering-wheel-angle-based driver fatigue detection method for real driving conditions. This method extracts approximate entropy (ApEn) feature from recorded steering wheel angle (SWA) signal with a decision-tree-like classifier to identify the driving fatigue level. ApEn is extracted from fixed-size sliding window on real-time SWA series. To further exploit the in-depth information of SWA, additional features including intervalpercentage, deviation, kurtosis and complexity value of ApEn are extracted and applied to the designed classifier. The experiment is set on 14.68 h of real road driving, the collected data has been segmented into three fatigue levels (“awake , “drowsy , “very drowsy ). The classification result showed that the proposed method achieves an averaged accuracy of 82.07%. These results confirm that the proposed method is effective in the detection of real-time driver fatigue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实际驾驶数据的方向盘角度近似熵的驾驶员疲劳检测
提出了一种基于方向盘转角的驾驶员疲劳检测方法。该方法利用决策树分类器从记录的方向盘角度(SWA)信号中提取近似熵(ApEn)特征来识别驾驶疲劳程度。从实时SWA序列的固定大小滑动窗口中提取ApEn。为了进一步挖掘SWA的深度信息,提取了ApEn的区间百分比、偏差、峰度和复杂度值等附加特征,并将其应用于设计的分类器中。实验设置在14.68小时的真实道路驾驶上,收集到的数据被划分为三个疲劳等级(“清醒”、“昏昏欲睡”、“非常昏昏欲睡”)。分类结果表明,该方法的平均准确率为82.07%。结果表明,该方法在驾驶员疲劳实时检测中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On solving the kinematics and Controlling of Origami Box-shaped robot, 405-415. Si Consensus of Multi-Agent Systems using Back-tracking and History following Algorithms Stabilizing control Algorithm for nonholonomic wheeled Mobile robots using adaptive integral sliding mode A velocity compensation Visual servo method for oculomotor control of bionic eyes On-Line trajectory Generation considering kinematic motion Constraints for robot manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1