Query Execution Time Analysis Using Apache Spark Framework for Big Data: A CRM Approach

M. Yadav
{"title":"Query Execution Time Analysis Using Apache Spark Framework for Big Data: A CRM Approach","authors":"M. Yadav","doi":"10.1142/s0219649222500502","DOIUrl":null,"url":null,"abstract":"Customer Relationship Management (CRM) is a systematic way of working with current and prospective customers to manage long-term relationships and interactions between the company and customers. Recently, Big Data has become a buzzword. It consists of huge data repositories, having information collected from online and offline resources, and it is hard to process such datasets with traditional data processing tools and techniques. The presented research work tries to explore the potential of Big Data to create, optimise and transform an insightful customer relationship management system by analysing large amount of datasets for enhancing customer life cycle profitability. In this research work, a dataset, “Book Crossing” is used for Big Data processing and execution time analysis for simple and complex SQL queries. This research tries to analyse the impact of data size on the query execution time for one of the majorly used Big Data frameworks, namely Apache Spark. It is a recently developed in-memory Big Data processing framework with a SPARK SQL module for efficient SQL query execution. It has been found that Apache-Spark gives better results with large size datasets compare to small size datasets and fares better as compared to Hadoop, one of the majorly used Big Data Frameworks (based on qualitative analysis).","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222500502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Customer Relationship Management (CRM) is a systematic way of working with current and prospective customers to manage long-term relationships and interactions between the company and customers. Recently, Big Data has become a buzzword. It consists of huge data repositories, having information collected from online and offline resources, and it is hard to process such datasets with traditional data processing tools and techniques. The presented research work tries to explore the potential of Big Data to create, optimise and transform an insightful customer relationship management system by analysing large amount of datasets for enhancing customer life cycle profitability. In this research work, a dataset, “Book Crossing” is used for Big Data processing and execution time analysis for simple and complex SQL queries. This research tries to analyse the impact of data size on the query execution time for one of the majorly used Big Data frameworks, namely Apache Spark. It is a recently developed in-memory Big Data processing framework with a SPARK SQL module for efficient SQL query execution. It has been found that Apache-Spark gives better results with large size datasets compare to small size datasets and fares better as compared to Hadoop, one of the majorly used Big Data Frameworks (based on qualitative analysis).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Apache Spark框架进行大数据查询执行时间分析:CRM方法
客户关系管理(CRM)是一种与现有和潜在客户合作的系统方式,以管理公司与客户之间的长期关系和互动。最近,大数据已经成为一个流行词。它由巨大的数据存储库组成,收集了来自在线和离线资源的信息,用传统的数据处理工具和技术很难处理这些数据集。本研究试图探索大数据的潜力,通过分析大量数据集来创建、优化和转变一个有洞察力的客户关系管理系统,以提高客户生命周期的盈利能力。在本研究工作中,使用“Book Crossing”数据集对简单和复杂SQL查询进行大数据处理和执行时间分析。本研究试图分析数据大小对主要使用的大数据框架之一Apache Spark的查询执行时间的影响。它是最近开发的内存大数据处理框架,带有SPARK SQL模块,用于高效执行SQL查询。已经发现,与小数据集相比,Apache-Spark在大数据集上提供了更好的结果,与Hadoop相比,Hadoop是最常用的大数据框架之一(基于定性分析)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Management in Higher Education in Vietnam: Insights from Higher Education Leaders - An Exploratory Study The Organisation's Size-Innovation Performance Relationship: The Role of Human Resource Development Mechanisms A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches Vocational Education Information Technology Based on Cross-Attention Fusion Knowledge Map Recommendation Algorithm Redesigning Knowledge Management Through Corporate Sustainability Strategy in the Post-Pandemic Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1