A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks

Xing Zhang, Xiaotong Cui, Kefei Cheng, Liang Zhang
{"title":"A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks","authors":"Xing Zhang, Xiaotong Cui, Kefei Cheng, Liang Zhang","doi":"10.1109/CIS52066.2020.00084","DOIUrl":null,"url":null,"abstract":"Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.","PeriodicalId":106959,"journal":{"name":"2020 16th International Conference on Computational Intelligence and Security (CIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS52066.2020.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于控制器局域网入侵检测的卷积编码器网络
与各种电子控制单元(ecu)集成,车辆在基本连接的帮助下变得更加智能。然而,与外界的互动引起了人们对网络攻击的极大关注。作为车载网络的主要标准,控制器区域网络(CAN)并没有内置任何安全机制来保证通信的安全性。这增加了攻击者拒绝服务、远程控制攻击的风险,对底层车辆、财产和人类生命构成严重威胁。因此,开发一种有效的车载网络入侵检测系统(IDS)以提高安全性已迫在眉睫。本文提出了一种基于特征的滑动窗口(FSW)来提取CAN数据字段和CAN id的特征。然后构造卷积编码器网络(CEN)来检测CAN网络的网络入侵。在实际数据集上对所提出的FSW-CEN方法进行了评估。实验结果表明,与传统的数据处理方法和卷积神经网络相比,我们的方法在检测准确率和假阴性率方面都能够更高的检测攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Algorithms and Complexity in RNA Structure Based on BHG Efficient attribute reduction based on rough sets and differential evolution algorithm Numerical Analysis of Influence of Medicine Cover Structure on Cutting Depth [Copyright notice] Linear Elements Separation via Vision System Feature and Seed Spreading from Topographic Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1