GPGPU: general-purpose computation on graphics hardware

D. Luebke, Mark J. Harris, N. Govindaraju, A. Lefohn, M. Houston, John Douglas Owens, Mark E. Segal, Matthew Papakipos, I. Buck
{"title":"GPGPU: general-purpose computation on graphics hardware","authors":"D. Luebke, Mark J. Harris, N. Govindaraju, A. Lefohn, M. Houston, John Douglas Owens, Mark E. Segal, Matthew Papakipos, I. Buck","doi":"10.1145/1188455.1188672","DOIUrl":null,"url":null,"abstract":"The graphics processor (GPU) on today's commodity video cards has evolved into an extremely powerful and flexible processor. Modern graphics architectures provide tremendous memory bandwidth and computational horsepower, with dozens of fully programmable shading units that support vector operations and IEEE floating point precision. High-level languages have emerged for graphics hardware, making this computational power accessible. GPGPU stands for \"General-Purpose Computation on GPUs\". GPGPU researchers have achieved over an order of magnitude speedup over modern CPUs on some non-graphics problems.This course provides detailed coverage of general-purpose computation on graphics hardware. We emphasize core computational building blocks, ranging from linear algebra to database queries, and review the tools, perils, and strategies in GPU programming. We present analysis of GPU performance characteristics, and use this analysis to provide insight into how to build efficient GPGPU algorithms. Finally we present a set of case studies on general-purpose applications of graphics hardware.","PeriodicalId":115940,"journal":{"name":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"212","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 212

Abstract

The graphics processor (GPU) on today's commodity video cards has evolved into an extremely powerful and flexible processor. Modern graphics architectures provide tremendous memory bandwidth and computational horsepower, with dozens of fully programmable shading units that support vector operations and IEEE floating point precision. High-level languages have emerged for graphics hardware, making this computational power accessible. GPGPU stands for "General-Purpose Computation on GPUs". GPGPU researchers have achieved over an order of magnitude speedup over modern CPUs on some non-graphics problems.This course provides detailed coverage of general-purpose computation on graphics hardware. We emphasize core computational building blocks, ranging from linear algebra to database queries, and review the tools, perils, and strategies in GPU programming. We present analysis of GPU performance characteristics, and use this analysis to provide insight into how to build efficient GPGPU algorithms. Finally we present a set of case studies on general-purpose applications of graphics hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPGPU:图形硬件上的通用计算
今天的商品视频卡上的图形处理器(GPU)已经发展成为一个极其强大和灵活的处理器。现代图形架构提供了巨大的内存带宽和计算能力,具有数十个完全可编程的着色单元,支持矢量操作和IEEE浮点精度。针对图形硬件的高级语言已经出现,使这种计算能力成为可能。GPGPU代表“gpu上的通用计算”。在一些非图形问题上,GPGPU研究人员已经实现了比现代cpu超过一个数量级的加速。本课程详细介绍了图形硬件上的通用计算。我们强调核心计算构建块,从线性代数到数据库查询,并回顾GPU编程中的工具,风险和策略。我们对GPU的性能特征进行了分析,并利用这一分析来深入了解如何构建高效的GPGPU算法。最后,我们提出了一组图形硬件通用应用的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical inference for efficient microarchitectural and application analysis The meeting list tool - a shared application for sharing dynamic information in meetings Liquid cooling: a next generation data center strategy Performance and presentation production elements Implementing algorithms on FPGAs using high-level languages and low-level libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1