Classifier based Gateway for Edge Computing

Julius Skirelis, D. Navakauskas
{"title":"Classifier based Gateway for Edge Computing","authors":"Julius Skirelis, D. Navakauskas","doi":"10.1109/AIEEE.2018.8592162","DOIUrl":null,"url":null,"abstract":"Edge Computing technology aims to replace regular cloud IoT solutions on applications where data intensity and link latency plays critical role. Improvement is achieved by placing processing at the edge of the network, deploying service close to data source of user. Limited resources of Edge devices stipulate the need to smartly distribute over devices computational tasks, as well as to implement role switching techniques in order to guarantee smooth distribution when network conditions change. Gateway technique is proposed in this paper, providing experimental comparison of Edge Computing, Cloud Computing and Content Delivery Network (CDN) data flow scenarios where terms of network delay, service time and processing time are considered. Simulation results achieved by EdgeCloudSim software confirms the performance gain of Classifier based Edge gateway in particular balanced hardware to load ratios.","PeriodicalId":198244,"journal":{"name":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE.2018.8592162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Edge Computing technology aims to replace regular cloud IoT solutions on applications where data intensity and link latency plays critical role. Improvement is achieved by placing processing at the edge of the network, deploying service close to data source of user. Limited resources of Edge devices stipulate the need to smartly distribute over devices computational tasks, as well as to implement role switching techniques in order to guarantee smooth distribution when network conditions change. Gateway technique is proposed in this paper, providing experimental comparison of Edge Computing, Cloud Computing and Content Delivery Network (CDN) data flow scenarios where terms of network delay, service time and processing time are considered. Simulation results achieved by EdgeCloudSim software confirms the performance gain of Classifier based Edge gateway in particular balanced hardware to load ratios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分类器的边缘计算网关
边缘计算技术旨在在数据强度和链路延迟起关键作用的应用中取代常规的云物联网解决方案。通过将处理置于网络边缘,将服务部署在靠近用户数据源的位置来实现改进。边缘设备资源有限,需要在设备间智能分配计算任务,并实现角色交换技术,以保证网络条件变化时的顺利分配。本文提出网关技术,在考虑网络延迟、服务时间和处理时间的情况下,对边缘计算、云计算和CDN (Content Delivery Network)数据流场景进行实验比较。EdgeCloudSim软件的仿真结果证实了基于分类器的边缘网关在平衡硬件负载比下的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence Analysis of Mutual Coupling Effects between a High-Voltage Transmission Line and a Fibre-optic Cable with a Conductive Support Element Deep Neural Network-based Feature Descriptor for Retinal Image Registration AIEEE 2018 Welcome Message AIEEE 2018 Title Page AIEEE 2018 Conference Organizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1