Designing Safety Critical Software Systems to Manage Inherent Uncertainty

A. Serban
{"title":"Designing Safety Critical Software Systems to Manage Inherent Uncertainty","authors":"A. Serban","doi":"10.1109/ICSA-C.2019.00051","DOIUrl":null,"url":null,"abstract":"Deploying machine learning algorithms in safety critical systems raises new challenges for system designers. The opaque nature of some algorithms together with the potentially large input space makes reasoning or formally proving safety difficult. In this paper, we argue that the inherent uncertainty that comes from using certain classes of machine learning algorithms can be mitigated through the development of software architecture design patterns. New or adapted patterns will allow faster roll out time for new technologies and decrease the negative impact machine learning components can have on safety critical systems. We outline the important safety challenges that machine learning algorithms raise and define three important directions for the development of new architectural patterns.","PeriodicalId":239999,"journal":{"name":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA-C.2019.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Deploying machine learning algorithms in safety critical systems raises new challenges for system designers. The opaque nature of some algorithms together with the potentially large input space makes reasoning or formally proving safety difficult. In this paper, we argue that the inherent uncertainty that comes from using certain classes of machine learning algorithms can be mitigated through the development of software architecture design patterns. New or adapted patterns will allow faster roll out time for new technologies and decrease the negative impact machine learning components can have on safety critical systems. We outline the important safety challenges that machine learning algorithms raise and define three important directions for the development of new architectural patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计安全关键软件系统来管理固有的不确定性
在安全关键系统中部署机器学习算法给系统设计人员带来了新的挑战。一些算法的不透明性质以及潜在的大输入空间使得推理或正式证明安全性变得困难。在本文中,我们认为可以通过开发软件架构设计模式来减轻使用某些机器学习算法所带来的固有不确定性。新的或经过调整的模式将加快新技术的推出时间,并减少机器学习组件对安全关键系统的负面影响。我们概述了机器学习算法提出的重要安全挑战,并为新架构模式的发展定义了三个重要方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Retargetable Fault Injection Framework for Safety Validation of Autonomous Vehicles Experience Report: Combining Mixed-Criticality Support with Resource Reservation and Spare Capacity Allocation DecidArch V2: An Improved Game to Teach Architecture Design Decision Making Towards Consistency Checking Between Software Architecture and Informal Documentation Machine Learning System Architectural Pattern for Improving Operational Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1