{"title":"ELECTROSTATIC CHARGE GENERATED FROM SLIDING OF RUBBER ON EPOXY FILLED BY RECYCLED RUBBER GRANULATES","authors":"Granulates, Eman","doi":"10.21608/jest.2021.206999","DOIUrl":null,"url":null,"abstract":"Floor materials made of epoxy resins were filled by recycled rubber granulates and paraffin oil to reduce their brittleness. The present study measures the electrostatic charge (ESC) generated from the dry sliding of rubber shoe on the proposed composites. The function of the oil that filled the composites in contents of 5.0 and 10.0 wt. % was to enhance the viscoelastic property. Different sizes of recycled rubber granulates were used as filling material in contents of 20, 40, 60 and 80 wt. %. The proposed composites slid against rubber surface at different normal loads, where coefficient of friction was determined. It was found that ESC generated on rubber sole sliding on epoxy filled by recycled rubber particles increased with increasing normal load due to the increased contact area. As the rubber content increased, the number of surface asperities increased leading to the increase of friction that increased the triboelectrified contact area. It is observed that particle size of rubber granulates significantly affected ESC. As the particle size increased, the deformation of rubber asperities increased the friction and therefore ESC increased. The minimum ESC values were measured for composites filled by 80 wt. % rubber of particle size up to 3.0 mm and 10 wt. % oil. Therefore, that composites can be recommended in floor tile applications.","PeriodicalId":212154,"journal":{"name":"Journal of the Egyptian Society of Tribology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Egyptian Society of Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/jest.2021.206999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Floor materials made of epoxy resins were filled by recycled rubber granulates and paraffin oil to reduce their brittleness. The present study measures the electrostatic charge (ESC) generated from the dry sliding of rubber shoe on the proposed composites. The function of the oil that filled the composites in contents of 5.0 and 10.0 wt. % was to enhance the viscoelastic property. Different sizes of recycled rubber granulates were used as filling material in contents of 20, 40, 60 and 80 wt. %. The proposed composites slid against rubber surface at different normal loads, where coefficient of friction was determined. It was found that ESC generated on rubber sole sliding on epoxy filled by recycled rubber particles increased with increasing normal load due to the increased contact area. As the rubber content increased, the number of surface asperities increased leading to the increase of friction that increased the triboelectrified contact area. It is observed that particle size of rubber granulates significantly affected ESC. As the particle size increased, the deformation of rubber asperities increased the friction and therefore ESC increased. The minimum ESC values were measured for composites filled by 80 wt. % rubber of particle size up to 3.0 mm and 10 wt. % oil. Therefore, that composites can be recommended in floor tile applications.