Asymptotic cumulants of some information criteria

H. Ogasawara
{"title":"Asymptotic cumulants of some information criteria","authors":"H. Ogasawara","doi":"10.5183/JJSCS.1512001_225","DOIUrl":null,"url":null,"abstract":"Asymptotic cumulants of the Akaike and Takeuchi information criteria are given under possible model misspecification up to the fourth order with the higher-order asymptotic variances, where two versions of the latter information criterion are defined using observed and estimated expected information matrices. The asymptotic cumulants are provided before and after studentization using the parameter estimators by the weighted-score method, which include the maximum likelihood and Bayes modal estimators as special cases. Higher-order bias corrections of the criteria are derived using log-likelihood derivatives, which yields simple results for cases under canonical parametrization in the exponential family. It is shown that in these cases the Jeffreys prior gives the vanishing higher-order bias of the Akaike information criterion. The results are illustrated by three examples. Simulations for model selection in regression and interval estimation are also given.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1512001_225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Asymptotic cumulants of the Akaike and Takeuchi information criteria are given under possible model misspecification up to the fourth order with the higher-order asymptotic variances, where two versions of the latter information criterion are defined using observed and estimated expected information matrices. The asymptotic cumulants are provided before and after studentization using the parameter estimators by the weighted-score method, which include the maximum likelihood and Bayes modal estimators as special cases. Higher-order bias corrections of the criteria are derived using log-likelihood derivatives, which yields simple results for cases under canonical parametrization in the exponential family. It is shown that in these cases the Jeffreys prior gives the vanishing higher-order bias of the Akaike information criterion. The results are illustrated by three examples. Simulations for model selection in regression and interval estimation are also given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一些信息准则的渐近累积量
Akaike和Takeuchi信息准则的渐近累积量在可能的模型错配下达到四阶,具有高阶渐近方差,其中后者信息准则的两个版本使用观察和估计的期望信息矩阵来定义。用加权分数法给出了参数估计量在学生化前后的渐近累积量,其中最大似然估计量和贝叶斯模态估计量是特例。使用对数似然导数推导了准则的高阶偏差修正,对于指数族中典型参数化的情况,得到了简单的结果。结果表明,在这些情况下,Jeffreys先验给出了Akaike信息准则的高阶偏差消失。通过三个算例说明了结果。给出了回归和区间估计中模型选择的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ENHANCING POWER OF SCORE TESTS FOR REGRESSION MODELS VIA FISHER TRANSFORMATION ANNOUNCEMENT: ON PUBLICATION OF THE JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE DISTRIBUTION OF THE LARGEST EIGENVALUE OF AN ELLIPTICAL WISHART MATRIX AND ITS SIMULATION COMMENT: ON CLOSING OF ENGLISH JOURNAL OF JSCS AND THE BIRTH OF NEW JOURNAL JJSD INFERENCE FOR THE EXTENT PARAMETER OF DAMAGE BY TSUNAMI WITH POINCARE CONES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1