Lexical Normalization of User-Generated Medical Text

A. Dirkson, S. Verberne, G. van Oortmerssen, Wessel Kraaij
{"title":"Lexical Normalization of User-Generated Medical Text","authors":"A. Dirkson, S. Verberne, G. van Oortmerssen, Wessel Kraaij","doi":"10.18653/v1/W19-3202","DOIUrl":null,"url":null,"abstract":"In the medical domain, user-generated social media text is increasingly used as a valuable complementary knowledge source to scientific medical literature. The extraction of this knowledge is complicated by colloquial language use and misspellings. Yet, lexical normalization of such data has not been addressed properly. This paper presents an unsupervised, data-driven spelling correction module for medical social media. Our method outperforms state-of-the-art spelling correction and can detect mistakes with an F0.5 of 0.888. Additionally, we present a novel corpus for spelling mistake detection and correction on a medical patient forum.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"48 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the medical domain, user-generated social media text is increasingly used as a valuable complementary knowledge source to scientific medical literature. The extraction of this knowledge is complicated by colloquial language use and misspellings. Yet, lexical normalization of such data has not been addressed properly. This paper presents an unsupervised, data-driven spelling correction module for medical social media. Our method outperforms state-of-the-art spelling correction and can detect mistakes with an F0.5 of 0.888. Additionally, we present a novel corpus for spelling mistake detection and correction on a medical patient forum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用户生成医学文本的词汇规范化
在医学领域,用户生成的社交媒体文本越来越多地被用作科学医学文献的有价值的补充知识来源。口语语言的使用和拼写错误使这种知识的提取变得复杂。然而,这些数据的词法规范化还没有得到适当的解决。本文提出了一种用于医疗社交媒体的无监督、数据驱动的拼写纠正模块。我们的方法优于最先进的拼写纠正,可以检测错误,F0.5为0.888。此外,我们提出了一个新的语料库拼写错误的检测和纠正在医疗病人论坛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approaching SMM4H with Merged Models and Multi-task Learning BIGODM System in the Social Media Mining for Health Applications Shared Task 2019 HITSZ-ICRC: A Report for SMM4H Shared Task 2019-Automatic Classification and Extraction of Adverse Effect Mentions in Tweets Lexical Normalization of User-Generated Medical Text Towards Text Processing Pipelines to Identify Adverse Drug Events-related Tweets: University of Michigan @ SMM4H 2019 Task 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1