Contrastive Translation Learning For Medical Image Segmentation

Wankang Zeng, Wenkang Fan, Dongfang Shen, Yinran Chen, Xióngbiao Luó
{"title":"Contrastive Translation Learning For Medical Image Segmentation","authors":"Wankang Zeng, Wenkang Fan, Dongfang Shen, Yinran Chen, Xióngbiao Luó","doi":"10.1109/icassp43922.2022.9747097","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation commonly uses cycle generative networks to produce synthesis data from source to target domains. Unfortunately, translated samples cannot effectively preserve semantic information from input sources, resulting in bad or low adaptability of the network to segment target data. This work proposes an advantageous domain translation mechanism to improve the perceptual ability of the network for accurate unlabeled target data segmentation. Our domain translation employs patchwise contrastive learning to improve the semantic content consistency between input and translated images. Our approach was applied to unsupervised domain adaptation based abdominal organ segmentation. The experimental results demonstrate the effectiveness of our framework that outperforms other methods.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised domain adaptation commonly uses cycle generative networks to produce synthesis data from source to target domains. Unfortunately, translated samples cannot effectively preserve semantic information from input sources, resulting in bad or low adaptability of the network to segment target data. This work proposes an advantageous domain translation mechanism to improve the perceptual ability of the network for accurate unlabeled target data segmentation. Our domain translation employs patchwise contrastive learning to improve the semantic content consistency between input and translated images. Our approach was applied to unsupervised domain adaptation based abdominal organ segmentation. The experimental results demonstrate the effectiveness of our framework that outperforms other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于医学图像分割的对比翻译学习
无监督域自适应通常使用循环生成网络产生从源域到目标域的综合数据。不幸的是,翻译后的样本不能有效地保留输入源的语义信息,导致网络对目标数据的分割适应性差或较低。这项工作提出了一个有利的领域翻译机制,以提高网络对准确的未标记目标数据分割的感知能力。我们的领域翻译采用补丁对比学习来提高输入和翻译图像之间的语义内容一致性。将该方法应用于基于无监督域自适应的腹部器官分割。实验结果表明,该框架的有效性优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1