On-Grid 3D Dynamic Channel Tracking for Space-Air Communications with Multiple UAVs

Jiadong Yu, Xiaolan Liu, Yue Gao
{"title":"On-Grid 3D Dynamic Channel Tracking for Space-Air Communications with Multiple UAVs","authors":"Jiadong Yu, Xiaolan Liu, Yue Gao","doi":"10.1109/iccc52777.2021.9580297","DOIUrl":null,"url":null,"abstract":"The space-air-ground integrated network (SAGIN) has drawn increasing attention for its potential to support ubiquitous wireless communications. As one of the link segments, it is non-trivial to track the 3D dynamic channel information in space-air links with multiple unmanned aerial vehicles (UAVs) and Ka-band orbiting low earth orbit (LEO) satellite. In this paper, we proposed a multi-dimensional Markov model (MD-MM) which investigates spatial and temporal probabilistic relationships of multi-user (MU) hidden support vector, single-user (SU) joint hidden support vector, and SU hidden value vector to represent the 3D dynamic channel. Moreover, we developed a novel multidimensional dynamic turbo approximate message passing (MD-DTAMP) algorithm to track the 3D dynamic on-grid channel with multiple UAVs in the system. Numerical results prove that the proposed algorithm shows superior channel tracking performance with smaller pilot overheads.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The space-air-ground integrated network (SAGIN) has drawn increasing attention for its potential to support ubiquitous wireless communications. As one of the link segments, it is non-trivial to track the 3D dynamic channel information in space-air links with multiple unmanned aerial vehicles (UAVs) and Ka-band orbiting low earth orbit (LEO) satellite. In this paper, we proposed a multi-dimensional Markov model (MD-MM) which investigates spatial and temporal probabilistic relationships of multi-user (MU) hidden support vector, single-user (SU) joint hidden support vector, and SU hidden value vector to represent the 3D dynamic channel. Moreover, we developed a novel multidimensional dynamic turbo approximate message passing (MD-DTAMP) algorithm to track the 3D dynamic on-grid channel with multiple UAVs in the system. Numerical results prove that the proposed algorithm shows superior channel tracking performance with smaller pilot overheads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多无人机空间-空中通信网格三维动态信道跟踪
空间-空气-地面综合网络(SAGIN)因其支持无处不在的无线通信的潜力而引起越来越多的关注。多架无人机和ka波段低地球轨道卫星在空-空链路中进行三维动态信道信息跟踪是空-空链路中的一个环节。本文提出了一种多维马尔可夫模型(MD-MM),该模型研究了多用户(MU)隐藏支持向量、单用户(SU)联合隐藏支持向量和SU隐藏值向量的时空概率关系,以表示三维动态通道。此外,我们开发了一种新的多维动态涡轮近似消息传递(MD-DTAMP)算法来跟踪系统中多架无人机的三维动态网格通道。数值结果表明,该算法具有较好的信道跟踪性能和较小的导频开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1