Micro interaction metrics for defect prediction

Taek Lee, Jaechang Nam, Donggyun Han, Sunghun Kim, H. In
{"title":"Micro interaction metrics for defect prediction","authors":"Taek Lee, Jaechang Nam, Donggyun Han, Sunghun Kim, H. In","doi":"10.1145/2025113.2025156","DOIUrl":null,"url":null,"abstract":"There is a common belief that developers' behavioral interaction patterns may affect software quality. However, widely used defect prediction metrics such as source code metrics, change churns, and the number of previous defects do not capture developers' direct interactions. We propose 56 novel micro interaction metrics (MIMs) that leverage developers' interaction information stored in the Mylyn data. Mylyn is an Eclipse plug-in, which captures developers' interactions such as file editing and selection events with time spent. To evaluate the performance of MIMs in defect prediction, we build defect prediction (classification and regression) models using MIMs, traditional metrics, and their combinations. Our experimental results show that MIMs significantly improve defect classification and regression accuracy.","PeriodicalId":184518,"journal":{"name":"ESEC/FSE '11","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESEC/FSE '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2025113.2025156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

Abstract

There is a common belief that developers' behavioral interaction patterns may affect software quality. However, widely used defect prediction metrics such as source code metrics, change churns, and the number of previous defects do not capture developers' direct interactions. We propose 56 novel micro interaction metrics (MIMs) that leverage developers' interaction information stored in the Mylyn data. Mylyn is an Eclipse plug-in, which captures developers' interactions such as file editing and selection events with time spent. To evaluate the performance of MIMs in defect prediction, we build defect prediction (classification and regression) models using MIMs, traditional metrics, and their combinations. Our experimental results show that MIMs significantly improve defect classification and regression accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于缺陷预测的微交互度量
人们普遍认为开发人员的行为交互模式可能会影响软件质量。然而,广泛使用的缺陷预测度量,如源代码度量、变更搅动和先前缺陷的数量,并不能捕获开发人员的直接交互。我们提出了56个新的微交互指标(mim),它们利用存储在Mylyn数据中的开发人员交互信息。Mylyn是一个Eclipse插件,它捕获开发人员的交互,如文件编辑和选择事件。为了评估mim在缺陷预测中的性能,我们使用mim、传统度量以及它们的组合来构建缺陷预测(分类和回归)模型。实验结果表明,MIMs显著提高了缺陷分类和回归精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semistructured merge: rethinking merge in revision control systems The 4th international workshop on social software engineering (SSE'11) Don't touch my code!: examining the effects of ownership on software quality SCORE: a scalable concolic testing tool for reliable embedded software Modeling the HTML DOM and browser API in static analysis of JavaScript web applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1