Scattering of a Cylindrical Wave from an Impedance Strip by Using the Method of Fractional Derivatives

E. Veliev, K. Karaçuha, Ertucrul Karaguha
{"title":"Scattering of a Cylindrical Wave from an Impedance Strip by Using the Method of Fractional Derivatives","authors":"E. Veliev, K. Karaçuha, Ertucrul Karaguha","doi":"10.1109/DIPED.2018.8543322","DOIUrl":null,"url":null,"abstract":"Earlier, we considered the use of fractional derivative approach to solve two dimensional diffraction problems with incoming wave as plane wave or cylindrical wave on an impedance strip. By introducing the fractional boundary condition (FBC), the \"fractional strip\" which is subject to FBC is solved. FBC acts as an intermediate case between perfect electric conductor and perfect magnetic conductor. The Cylindrical wave diffraction problem from a strip described by FBC is formulated and solved using new method. While analyzing the scattering properties of fractional strip, new features are observed. When fractional order (FO) equals to 0.5, the problem can be found in analytical form for any value of wavenumber. Here, FO is taken 0.5 and the study is done by putting line source at far field and having analytical solution by using asymptotic approach.","PeriodicalId":146873,"journal":{"name":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2018.8543322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Earlier, we considered the use of fractional derivative approach to solve two dimensional diffraction problems with incoming wave as plane wave or cylindrical wave on an impedance strip. By introducing the fractional boundary condition (FBC), the "fractional strip" which is subject to FBC is solved. FBC acts as an intermediate case between perfect electric conductor and perfect magnetic conductor. The Cylindrical wave diffraction problem from a strip described by FBC is formulated and solved using new method. While analyzing the scattering properties of fractional strip, new features are observed. When fractional order (FO) equals to 0.5, the problem can be found in analytical form for any value of wavenumber. Here, FO is taken 0.5 and the study is done by putting line source at far field and having analytical solution by using asymptotic approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分数阶导数法研究阻抗条上圆柱波的散射
在此之前,我们考虑了用分数阶导数方法来解决阻抗条上入射波为平面波或柱面波的二维衍射问题。通过引入分数边界条件(FBC),求解了受分数边界条件约束的“分数带”。FBC是介于完美电导体和完美磁导体之间的中间体。提出了用FBC描述的条形波衍射问题,并用新方法求解了该问题。在分析分数条的散射特性时,发现了一些新的特性。当分数阶(FO)等于0.5时,对于任意波数的值,问题都可以用解析形式得到。这里取FO为0.5,将线源置于远场,用渐近方法求解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mathematical Models of Acoustic Wave Scattering by a Finite Flat Impedance Strip Grating The Crank-Nicolson FDTD Method in Cylindrical Coordinates and Its Application to Underwater UXO Detection and Classification Problems Waveguides and Transmission Lines Electromagnetic Internal Gravity Waves in an Ideally Conducting Medium Numerical Specifics in Nonlinear Layer Computation Near Eigen Frequencies of Scattering and Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1