{"title":"Diatomic metasurface for multi-functional light field manipulation","authors":"Xiangping Li, Zi-lan Deng","doi":"10.3390/IMCO2019-06170","DOIUrl":null,"url":null,"abstract":"Metasurface composed of arrays of subwavelength scale optical antennas emerges as a new paradigm for light field manipulation and unpins various flat optical diffractive devices. Based on their phase modulation mechanisms, the reported metasurfaces can be classified into three categories: resonance phase, propagation phase and geometric phase. In this talk, we propose a new metasurface design allowing to fully control the phase, amplitude, polarization and frequency of visible light simultaneously. This is achieved through a generalized geometric phase mechanism which combines the detour phase and the Pancharatnam–Berry phase. Utilizing a diatomic design strategy, the in-plane displacements and orientations of two identical meta-atom in each unit meta-molecules are fully exploited enabling light field manipulation at multi-dimensions. Leveraging this appealing feature, we experimentally demonstrated the broadband vectorial holographic images with spatially-varying polarization states, dual-way polarization switching functionalities, and full-color complex-amplitude vectorial holograms. Our work may suggest a new route to achromatic diffractive elements, polarization optics and ultra-secure anti-counterfeiting.","PeriodicalId":159732,"journal":{"name":"Proceedings of The 9th International Multidisciplinary Conference on Optofluidics 2019","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 9th International Multidisciplinary Conference on Optofluidics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/IMCO2019-06170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurface composed of arrays of subwavelength scale optical antennas emerges as a new paradigm for light field manipulation and unpins various flat optical diffractive devices. Based on their phase modulation mechanisms, the reported metasurfaces can be classified into three categories: resonance phase, propagation phase and geometric phase. In this talk, we propose a new metasurface design allowing to fully control the phase, amplitude, polarization and frequency of visible light simultaneously. This is achieved through a generalized geometric phase mechanism which combines the detour phase and the Pancharatnam–Berry phase. Utilizing a diatomic design strategy, the in-plane displacements and orientations of two identical meta-atom in each unit meta-molecules are fully exploited enabling light field manipulation at multi-dimensions. Leveraging this appealing feature, we experimentally demonstrated the broadband vectorial holographic images with spatially-varying polarization states, dual-way polarization switching functionalities, and full-color complex-amplitude vectorial holograms. Our work may suggest a new route to achromatic diffractive elements, polarization optics and ultra-secure anti-counterfeiting.