A new technique for linear antenna array processing for reduced sidelobes using neural networks

M. Aboul-Dahab, K.A. Hijjah, S. El-Khamy
{"title":"A new technique for linear antenna array processing for reduced sidelobes using neural networks","authors":"M. Aboul-Dahab, K.A. Hijjah, S. El-Khamy","doi":"10.1109/NRSC.1998.711446","DOIUrl":null,"url":null,"abstract":"In adaptive antenna arrays (AAA), shaping the array factor is a challenging task where different sophisticated adaptation algorithms might be utilized. Applying these algorithms to AAA results in limited performance, due to slow convergence rates and increased computational complexity. The high cost required is another factor that should be taken into consideration. From another point of view, the synthesis of linear arrays to produce highly reduced sidelobes is a problem of similar complexity and limitations. This paper suggests a new synthesis technique for antenna array systems based on a trained neural network (NN). In particular, the output of a linear array is processed by two NNs, The simulation results show that the NN, when trained to minimize the sidelobe levels of the array, results in highly improved patterns with very deep sidelobes. This method substitutes other tedious conventional algorithms that are usually used in adaptive antenna arrays and array synthesis.","PeriodicalId":128355,"journal":{"name":"Proceedings of the Fifteenth National Radio Science Conference. NRSC '98 (Cat. No.98EX109)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth National Radio Science Conference. NRSC '98 (Cat. No.98EX109)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1998.711446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In adaptive antenna arrays (AAA), shaping the array factor is a challenging task where different sophisticated adaptation algorithms might be utilized. Applying these algorithms to AAA results in limited performance, due to slow convergence rates and increased computational complexity. The high cost required is another factor that should be taken into consideration. From another point of view, the synthesis of linear arrays to produce highly reduced sidelobes is a problem of similar complexity and limitations. This paper suggests a new synthesis technique for antenna array systems based on a trained neural network (NN). In particular, the output of a linear array is processed by two NNs, The simulation results show that the NN, when trained to minimize the sidelobe levels of the array, results in highly improved patterns with very deep sidelobes. This method substitutes other tedious conventional algorithms that are usually used in adaptive antenna arrays and array synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于神经网络的线性天线阵副瓣处理新技术
在自适应天线阵列(AAA)中,阵列因子的形成是一项具有挑战性的任务,需要使用各种复杂的自适应算法。由于收敛速度慢,计算复杂度增加,将这些算法应用于AAA会导致性能受限。所需的高成本是另一个应该考虑的因素。从另一个角度来看,合成线性阵列以产生高度减少的副瓣是一个类似的复杂性和局限性的问题。提出了一种基于训练神经网络的天线阵系统综合新技术。特别是,线性阵列的输出由两个神经网络处理,仿真结果表明,当训练神经网络最小化阵列的副瓣电平时,可以得到具有非常深副瓣的高度改进的图案。该方法替代了自适应天线阵列和阵列综合中常用的繁琐的传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study and modeling of a new MOSFET device for precision detection of microwave signal polarization A robust iterative scheme for FEM applications terminated by the perfectly matched layer (PML) absorbers Analysis of intrinsic small signal parameters in HEMTs Wide-range portable dosimeter based on microcontroller The penetration of nuclear electromagnetic pulses (EMP) through shielded communication cables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1