Prediction of VLF Sub-Ionospheric Wave Propagation Using Nonlinear System Identification

H. Santosa, Y. Hobara
{"title":"Prediction of VLF Sub-Ionospheric Wave Propagation Using Nonlinear System Identification","authors":"H. Santosa, Y. Hobara","doi":"10.1109/ICWT.2018.8527783","DOIUrl":null,"url":null,"abstract":"Very low frequency (VLF) waves have been used as a powerful tool to monitor and study the lower ionosphere (D/E region). In this paper, nonlinear physical processes of VLF signals propagation can be well represented by nonlinear autoregressive with exogenous input neural network (NARXNN) model. Further, a study of NARXNN model to predict the daily nighttime mean amplitude of VLF propagation wave to recognize the ionospheric perturbation along the great circle path. The NARXNN model is powerful in predicting time series data and suitable representations of a variation of nonlinear models. The daily input variables of various physical parameters with the time interval from 15 March 2014 to 26 May 2016 were used to build prediction model. The results of the built models are performing reasonably good for one-step ahead (OSA) predictions of the daily nighttime of VLF electric field amplitude. The NARXNN model has good performance for predicting the VLF amplitude variation for different latitude paths.","PeriodicalId":356888,"journal":{"name":"2018 4th International Conference on Wireless and Telematics (ICWT)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Wireless and Telematics (ICWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWT.2018.8527783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Very low frequency (VLF) waves have been used as a powerful tool to monitor and study the lower ionosphere (D/E region). In this paper, nonlinear physical processes of VLF signals propagation can be well represented by nonlinear autoregressive with exogenous input neural network (NARXNN) model. Further, a study of NARXNN model to predict the daily nighttime mean amplitude of VLF propagation wave to recognize the ionospheric perturbation along the great circle path. The NARXNN model is powerful in predicting time series data and suitable representations of a variation of nonlinear models. The daily input variables of various physical parameters with the time interval from 15 March 2014 to 26 May 2016 were used to build prediction model. The results of the built models are performing reasonably good for one-step ahead (OSA) predictions of the daily nighttime of VLF electric field amplitude. The NARXNN model has good performance for predicting the VLF amplitude variation for different latitude paths.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非线性系统辨识预测VLF亚电离层波传播
甚低频(VLF)波已被用作监测和研究电离层下部(D/E区)的有力工具。本文利用外生输入非线性自回归神经网络模型(NARXNN)很好地表征了VLF信号传播的非线性物理过程。在此基础上,研究了利用NARXNN模型预测VLF传播波的日夜间平均振幅,以识别电离层沿大圆路径的扰动。NARXNN模型在预测时间序列数据和适合表示非线性模型的变化方面具有强大的功能。利用2014年3月15日至2016年5月26日各物理参数的日输入变量建立预测模型。所建立的模型对VLF电场振幅的逐日夜间预测具有较好的预测效果。NARXNN模型对不同纬度路径下的VLF振幅变化具有较好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Key Distribution (QKD) Protocols: A Survey Designing Electronic Module on Synthetic Polymer Material Based on Green Chemistry Proximity-Coupled Multiband Substrate Integrated Waveguide Antenna with Defected Ground Structure System Design of Controlling and Monitoring on Aquaponic Based on Internet of Things Design and Implementation of SDR-Based GSM Mobile BTS for Remote and Disaster Affected Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1