Xinjian Wei, Kaidi Wang, Guangxu Li, Hyoungseop Kim
{"title":"An Automatic Design of Camouflage Patterns Based on CNNs","authors":"Xinjian Wei, Kaidi Wang, Guangxu Li, Hyoungseop Kim","doi":"10.1145/3404555.3404637","DOIUrl":null,"url":null,"abstract":"In order to get with the environmental changes of battlefield quickly, the military camouflage should be changeable. If the camouflage patterns of the clothes and vehicles like tanks are different from the environment, it's very easy for cameras of enemies to find. As we all know that the same patterns is used in the most of current military all over the world. In this paper, we propose a novel feature-extraction method from an image using convolutional neural networks. Then the pattern will be combined with the environmental style pattern. The composite image is mapped onto the surface of the actual 3D clothes and vehicles finally. In this paper, the Eye-Movement equipment is applied to evaluate the results for better comparison. We can produce the proper pattern even the different and complicated environment.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In order to get with the environmental changes of battlefield quickly, the military camouflage should be changeable. If the camouflage patterns of the clothes and vehicles like tanks are different from the environment, it's very easy for cameras of enemies to find. As we all know that the same patterns is used in the most of current military all over the world. In this paper, we propose a novel feature-extraction method from an image using convolutional neural networks. Then the pattern will be combined with the environmental style pattern. The composite image is mapped onto the surface of the actual 3D clothes and vehicles finally. In this paper, the Eye-Movement equipment is applied to evaluate the results for better comparison. We can produce the proper pattern even the different and complicated environment.