Brain MR image segmentation with fuzzy C-means and using additional shape elements

O. Ozyurt, A. Dinçer, C. Ozturk
{"title":"Brain MR image segmentation with fuzzy C-means and using additional shape elements","authors":"O. Ozyurt, A. Dinçer, C. Ozturk","doi":"10.1109/BIYOMUT.2009.5130271","DOIUrl":null,"url":null,"abstract":"Using the intensity of the element in interest, standard FCM generates the membership values to all classes. When used for segmentation of images, this method is not capable of correcting the effects of noise. To overcome that problem, we propose a modification on the standard method. The voxels in the neighborhood are taken into account, forming the shape elements in additon to the intensity of the voxel in interest. The resulting input vector is used with FCM. The proposed method was tested with MR brain image with and without added syntetic noise.","PeriodicalId":119026,"journal":{"name":"2009 14th National Biomedical Engineering Meeting","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 14th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2009.5130271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Using the intensity of the element in interest, standard FCM generates the membership values to all classes. When used for segmentation of images, this method is not capable of correcting the effects of noise. To overcome that problem, we propose a modification on the standard method. The voxels in the neighborhood are taken into account, forming the shape elements in additon to the intensity of the voxel in interest. The resulting input vector is used with FCM. The proposed method was tested with MR brain image with and without added syntetic noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊c均值和附加形状元素的脑MR图像分割
使用感兴趣元素的强度,标准FCM生成所有类的成员值。当用于图像分割时,该方法不能校正噪声的影响。为了克服这个问题,我们提出对标准方法进行修改。除了感兴趣的体素的强度外,还考虑了邻域中的体素,形成形状元素。得到的输入向量与FCM一起使用。用添加和不添加合成噪声的脑磁共振图像对该方法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hemodynamic correlates of mental arithmetic task in migraine Extendable intramedullary nail with mechanical loading Comparison of 980-nm and 1070-nm in endovenous laser treatment Feasibility of head imaging using multi-frequency magnetic induction tomography The impact of Daubechies Wavelet performances on Ventricular Tachyarrhythmia Patients for determination of dominant frequency bands in HRV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1