Arithmetic Mean May Offer Fixed Points When Expected Mean Fails in Probabilistic Asynchronous Affine Inference

Georgios Apostolakis, A. Bletsas
{"title":"Arithmetic Mean May Offer Fixed Points When Expected Mean Fails in Probabilistic Asynchronous Affine Inference","authors":"Georgios Apostolakis, A. Bletsas","doi":"10.1109/SSP53291.2023.10208025","DOIUrl":null,"url":null,"abstract":"Distributed computing over multiple terminals is recently regaining increased popularity. This work studies the probabilistic asynchronous affine model, which can be applied in a vast range of message passing (inference) algorithms; moreover, the probability of a terminal failing to exchange messages can be also modeled. This work complements recent prior art by analyzing the state vector’s arithmetic mean instead of the expected mean, since there are cases where valid fixed points can be retrieved from the arithmetic mean (exploiting a finite number of experiments), even if the expected mean diverges. This work highlights this fact and offers a sufficient criterion for arithmetic mean convergence to a fixed point, for the first time in the literature; the criterion also covers cases where the individual experiments do not converge but their arithmetic mean does. Simulation results verify the theoretical findings.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed computing over multiple terminals is recently regaining increased popularity. This work studies the probabilistic asynchronous affine model, which can be applied in a vast range of message passing (inference) algorithms; moreover, the probability of a terminal failing to exchange messages can be also modeled. This work complements recent prior art by analyzing the state vector’s arithmetic mean instead of the expected mean, since there are cases where valid fixed points can be retrieved from the arithmetic mean (exploiting a finite number of experiments), even if the expected mean diverges. This work highlights this fact and offers a sufficient criterion for arithmetic mean convergence to a fixed point, for the first time in the literature; the criterion also covers cases where the individual experiments do not converge but their arithmetic mean does. Simulation results verify the theoretical findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在概率异步仿射推理中,当期望均值失效时,算术均值可以提供不动点
多终端上的分布式计算最近重新流行起来。本文研究了概率异步仿射模型,该模型可应用于广泛的消息传递(推理)算法;此外,还可以对终端交换消息失败的概率进行建模。这项工作通过分析状态向量的算术平均值而不是期望平均值来补充最近的现有技术,因为在某些情况下,即使期望平均值偏离,也可以从算术平均值(利用有限数量的实验)中检索到有效的固定点。这项工作突出了这一事实,并提供了一个充分的准则,算术平均收敛到一个不动点,在文献中第一次;该准则也适用于个别实验不收敛但算术平均值收敛的情况。仿真结果验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1