End-to-end evaluation of practical video analytics systems for face detection and recognition

Praneet Singh, E. Delp, A. Reibman
{"title":"End-to-end evaluation of practical video analytics systems for face detection and recognition","authors":"Praneet Singh, E. Delp, A. Reibman","doi":"10.2352/EI.2023.35.16.AVM-111","DOIUrl":null,"url":null,"abstract":"Practical video analytics systems that are deployed in bandwidth constrained environments like autonomous vehicles perform computer vision tasks such as face detection and recognition. In an end-to-end face analytics system, inputs are first compressed using popular video codecs like HEVC and then passed onto modules that perform face detection, alignment, and recognition sequentially. Typically, the modules of these systems are evaluated independently using task-specific imbalanced datasets that can misconstrue performance estimates. In this paper, we perform a thorough end-to-end evaluation of a face analytics system using a driving-specific dataset, which enables meaningful interpretations. We demonstrate how independent task evaluations, dataset imbalances, and inconsistent annotations can lead to incorrect system performance estimates. We propose strategies to create balanced evaluation subsets of our dataset and to make its annotations consistent across multiple analytics tasks and scenarios. We then evaluate the end-to-end system performance sequentially to account for task interdependencies. Our experiments show that our approach provides consistent, accurate, and interpretable estimates of the system's performance which is critical for real-world applications.","PeriodicalId":177462,"journal":{"name":"Autonomous Vehicles and Machines","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Vehicles and Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/EI.2023.35.16.AVM-111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Practical video analytics systems that are deployed in bandwidth constrained environments like autonomous vehicles perform computer vision tasks such as face detection and recognition. In an end-to-end face analytics system, inputs are first compressed using popular video codecs like HEVC and then passed onto modules that perform face detection, alignment, and recognition sequentially. Typically, the modules of these systems are evaluated independently using task-specific imbalanced datasets that can misconstrue performance estimates. In this paper, we perform a thorough end-to-end evaluation of a face analytics system using a driving-specific dataset, which enables meaningful interpretations. We demonstrate how independent task evaluations, dataset imbalances, and inconsistent annotations can lead to incorrect system performance estimates. We propose strategies to create balanced evaluation subsets of our dataset and to make its annotations consistent across multiple analytics tasks and scenarios. We then evaluate the end-to-end system performance sequentially to account for task interdependencies. Our experiments show that our approach provides consistent, accurate, and interpretable estimates of the system's performance which is critical for real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
端到端评估实际视频分析系统的人脸检测和识别
部署在带宽受限环境(如自动驾驶汽车)中的实用视频分析系统可以执行人脸检测和识别等计算机视觉任务。在端到端人脸分析系统中,输入首先使用流行的视频编解码器(如HEVC)进行压缩,然后传递给执行人脸检测、对齐和识别的模块。通常,使用特定于任务的不平衡数据集独立评估这些系统的模块,这些数据集可能会误解性能估计。在本文中,我们使用特定于驾驶的数据集对人脸分析系统进行了彻底的端到端评估,从而实现了有意义的解释。我们演示了独立的任务评估、数据集不平衡和不一致的注释如何导致不正确的系统性能估计。我们提出了一些策略来创建数据集的平衡评估子集,并使其注释在多个分析任务和场景中保持一致。然后,我们依次评估端到端的系统性能,以考虑任务的相互依赖性。我们的实验表明,我们的方法提供了系统性能的一致、准确和可解释的估计,这对现实世界的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using simulation to quantify the performance of automotive perception systems Comprehensive stray light (flare) testing: Lessons learned MTF as a performance indicator for AI algorithms? OpTIFlow - An optimized end-to-end dataflow for accelerating deep learning workloads on heterogeneous SoCs End-to-end evaluation of practical video analytics systems for face detection and recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1