Accelerating convergence in wireless federated learning by sharing marginal data

Eunil Seo, Vinh Pham, E. Elmroth
{"title":"Accelerating convergence in wireless federated learning by sharing marginal data","authors":"Eunil Seo, Vinh Pham, E. Elmroth","doi":"10.1109/ICOIN56518.2023.10048937","DOIUrl":null,"url":null,"abstract":"Deploying federated learning (FL) over wireless mobile networks can be expensive because of the cost of wireless communication resources. Efforts have been made to reduce communication costs by accelerating model convergence, leading to the development of model-driven methods based on feature extraction, model-integrated algorithms, and client selection. However, the resulting performance gains are limited by the dependence of neural network convergence on input data quality. This work, therefore, investigates the use of marginal shared data (e.g., a single data entry) to accelerate model convergence and thereby reduce communication costs in FL. Experimental results show that sharing even a single piece of data can improve performance by 14.6% and reduce communication costs by 61.13% when using the federated averaging algorithm (FedAvg). Marginal data sharing could therefore be an attractive and practical solution in privacy-flexible environments or collaborative operational systems such as fog robotics and vehicles. Moreover, by assigning new labels to the shared data, it is possible to extend the number of classifying labels of an FL model even when the initial input datasets lack the labels in question.","PeriodicalId":285763,"journal":{"name":"2023 International Conference on Information Networking (ICOIN)","volume":"890 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN56518.2023.10048937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deploying federated learning (FL) over wireless mobile networks can be expensive because of the cost of wireless communication resources. Efforts have been made to reduce communication costs by accelerating model convergence, leading to the development of model-driven methods based on feature extraction, model-integrated algorithms, and client selection. However, the resulting performance gains are limited by the dependence of neural network convergence on input data quality. This work, therefore, investigates the use of marginal shared data (e.g., a single data entry) to accelerate model convergence and thereby reduce communication costs in FL. Experimental results show that sharing even a single piece of data can improve performance by 14.6% and reduce communication costs by 61.13% when using the federated averaging algorithm (FedAvg). Marginal data sharing could therefore be an attractive and practical solution in privacy-flexible environments or collaborative operational systems such as fog robotics and vehicles. Moreover, by assigning new labels to the shared data, it is possible to extend the number of classifying labels of an FL model even when the initial input datasets lack the labels in question.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过共享边缘数据加速无线联合学习的收敛
由于无线通信资源的成本,在无线移动网络上部署联邦学习(FL)可能会非常昂贵。人们通过加速模型收敛来降低通信成本,从而开发了基于特征提取、模型集成算法和客户端选择的模型驱动方法。然而,神经网络收敛对输入数据质量的依赖限制了性能的提高。因此,这项工作研究了使用边际共享数据(例如,单个数据条目)来加速模型收敛,从而降低FL中的通信成本。实验结果表明,使用联邦平均算法(FedAvg)时,即使共享单个数据也可以提高性能14.6%,降低通信成本61.13%。因此,在隐私灵活的环境或协作操作系统(如雾机器人和车辆)中,边际数据共享可能是一个有吸引力且实用的解决方案。此外,通过为共享数据分配新标签,可以扩展FL模型的分类标签数量,即使初始输入数据集缺乏问题中的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Allocation Reinforcement Learning for Quality of Service Maintenance in Cloud-Based Services A Software-Defined Networks Approach for Cyber Physical Systems Resource Allocation and User Association Using Reinforcement Learning via Curriculum in a Wireless Network with High User Mobility Joint Association and Power Allocation for Data Collection in HAP-LEO-Assisted IoT Networks Small Object Detection Technology Using Multi-Modal Data Based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1