A new general design method of segmented-rotor wound field flux-switching motors with complementary magnet circuit

R. Cao, Y. Jin, Y. Zhang, W. Huang
{"title":"A new general design method of segmented-rotor wound field flux-switching motors with complementary magnet circuit","authors":"R. Cao, Y. Jin, Y. Zhang, W. Huang","doi":"10.1109/INTMAG.2015.7157601","DOIUrl":null,"url":null,"abstract":"Permanent-magnet (PM) motors with both magnets and armature windings on stator (stator PM motors) have attracted considerable attention due to their simple structure, robust configuration, high power density, easy heat dissipation, and suitability for high-speed operations. However, they suffer from the problem of uncontrollable flux, thus limiting their constant-power operation for EVs. Also, they have the disadvantage of relatively high cost and potential resource issues because of rare-earth magnets are used. Currently, a new stator electrically wound field flux-switching (WFFS) motor with segmented-rotor and without rare-earth magnets have attracted considerable attention due to their simple and robust structure, low cost, no use of rare-earth magnet, wide speed operation range. However, the existing WFFS motors with segmented-rotor suffer from the drawbacks of asymmetry back-EMF and bigger torque ripple. The key of this paper is to propose a new general design method of WFFS motors with segmented-rotor and complementary magnet circuit.","PeriodicalId":381832,"journal":{"name":"2015 IEEE Magnetics Conference (INTERMAG)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Magnetics Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2015.7157601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Permanent-magnet (PM) motors with both magnets and armature windings on stator (stator PM motors) have attracted considerable attention due to their simple structure, robust configuration, high power density, easy heat dissipation, and suitability for high-speed operations. However, they suffer from the problem of uncontrollable flux, thus limiting their constant-power operation for EVs. Also, they have the disadvantage of relatively high cost and potential resource issues because of rare-earth magnets are used. Currently, a new stator electrically wound field flux-switching (WFFS) motor with segmented-rotor and without rare-earth magnets have attracted considerable attention due to their simple and robust structure, low cost, no use of rare-earth magnet, wide speed operation range. However, the existing WFFS motors with segmented-rotor suffer from the drawbacks of asymmetry back-EMF and bigger torque ripple. The key of this paper is to propose a new general design method of WFFS motors with segmented-rotor and complementary magnet circuit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的互补磁路分段转子绕线励磁开关电机通用设计方法
定子上既有磁体又有电枢绕组的永磁电机(定子永磁电机)因其结构简单、结构坚固、功率密度高、散热容易、适合高速运行而备受关注。然而,它们存在磁通不可控的问题,限制了它们在电动汽车上的恒功率运行。此外,由于使用稀土磁体,它们还具有成本相对较高和潜在资源问题的缺点。目前,一种不含稀土磁体的分段转子定子电绕磁场开关(WFFS)电机因其结构简单、坚固、成本低、不使用稀土磁体、调速范围广而受到广泛关注。然而,现有的分段转子WFFS电机存在反电动势不对称和转矩脉动较大的缺点。本文的重点是提出了一种新的分段转子互补磁路WFFS电机的通用设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical prediction of armature reaction field distribution in PMAC machines with different winding configuration Study of [Co/Ni]N/[Co/Pt]N-based spin valves with perpendicular magnetic anisotropy Quantitative comparison of permanent magnet linear machines for ropeless elevator Nonlinear dynamic model of a pivot ball bearing in hard disk drive including the hertzian contact force Three-dimensional fluid field and thermal field research of squirrel-cage induction motors operating in broken bar fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1