A New Method for Initialising the K-Means Clustering Algorithm

X. Qin, Shijue Zheng
{"title":"A New Method for Initialising the K-Means Clustering Algorithm","authors":"X. Qin, Shijue Zheng","doi":"10.1109/KAM.2009.20","DOIUrl":null,"url":null,"abstract":"As a classic clustering method, the traditional K-Means algorithm has been widely used in pattern recognition and machine learning. It is known that the performance of the K-means clustering algorithm depend highly on initial cluster centers. Generally initial cluster centers are selected randomly, so the algorithm could not lead to the unique result. In this paper, we present a method to compute initial cluster centers for K-means clustering. Our method is based on an efficient technique for estimating the modes of a distribution. We apply the new method to the K-means algorithm. The experimental results show better performance of the proposed method.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

As a classic clustering method, the traditional K-Means algorithm has been widely used in pattern recognition and machine learning. It is known that the performance of the K-means clustering algorithm depend highly on initial cluster centers. Generally initial cluster centers are selected randomly, so the algorithm could not lead to the unique result. In this paper, we present a method to compute initial cluster centers for K-means clustering. Our method is based on an efficient technique for estimating the modes of a distribution. We apply the new method to the K-means algorithm. The experimental results show better performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种初始化k均值聚类算法的新方法
传统的K-Means算法作为一种经典的聚类方法,在模式识别和机器学习中得到了广泛的应用。众所周知,k均值聚类算法的性能高度依赖于初始聚类中心。通常初始聚类中心的选择是随机的,因此算法不能得到唯一的结果。本文提出了一种计算k均值聚类初始聚类中心的方法。我们的方法是基于一种估计分布模态的有效技术。我们将新方法应用于K-means算法。实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction Methods of Attributes Based on Improved BPSO A Novel Program Analysis Method Based on Execution Path Correlation A New Repeat Family Detection Method Based on Sparse de Bruijn Graph Extracting Event Temporal Information Based on Web Application of Ant Colony Algorithm in Discrete Job-Shop Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1