ChaoPIM: A PIM-based Protection Framework for DNN Accelerators Using Chaotic Encryption

Ning Lin, Xiaoming Chen, Chunwei Xia, Jing Ye, Xiaowei Li
{"title":"ChaoPIM: A PIM-based Protection Framework for DNN Accelerators Using Chaotic Encryption","authors":"Ning Lin, Xiaoming Chen, Chunwei Xia, Jing Ye, Xiaowei Li","doi":"10.1109/ATS52891.2021.00013","DOIUrl":null,"url":null,"abstract":"Although deep neural networks (DNNs) have been widely used, DNN models running on ASIC- or FPGA-based accelerators still lack effective and efficient protection. Once DNN models are stolen by attackers, it will not only infringe the intellectual property of model providers but also lead to security issues. The existing parameter encryption method brings greater power consumption, which is difficult to apply to resource-constrained edge devices. This paper proposes an effective and efficient framework –ChaoPIM to protect the security of DNN models by utilizing the chaotic encryption and the Processing-In-Memory (PIM) technology. Detailed experimental results show that our framework can effectively prevent attackers from using DNN models normally, as the accuracy of stolen models is quite low. Compared with the powerful Cortex-A53, Kryo-280, Intel-i5-8265U CPUs and TITAN V GPU, ChaoPIM achieves considerable performance improvements on various DNN models.","PeriodicalId":432330,"journal":{"name":"2021 IEEE 30th Asian Test Symposium (ATS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 30th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS52891.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Although deep neural networks (DNNs) have been widely used, DNN models running on ASIC- or FPGA-based accelerators still lack effective and efficient protection. Once DNN models are stolen by attackers, it will not only infringe the intellectual property of model providers but also lead to security issues. The existing parameter encryption method brings greater power consumption, which is difficult to apply to resource-constrained edge devices. This paper proposes an effective and efficient framework –ChaoPIM to protect the security of DNN models by utilizing the chaotic encryption and the Processing-In-Memory (PIM) technology. Detailed experimental results show that our framework can effectively prevent attackers from using DNN models normally, as the accuracy of stolen models is quite low. Compared with the powerful Cortex-A53, Kryo-280, Intel-i5-8265U CPUs and TITAN V GPU, ChaoPIM achieves considerable performance improvements on various DNN models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChaoPIM:基于pim的DNN加速器混沌加密保护框架
尽管深度神经网络(DNN)得到了广泛的应用,但在基于ASIC或fpga的加速器上运行的DNN模型仍然缺乏有效和高效的保护。一旦DNN模型被攻击者窃取,不仅会侵犯模型提供者的知识产权,还会导致安全问题。现有的参数加密方法带来较大的功耗,难以应用于资源受限的边缘设备。利用混沌加密和内存处理(PIM)技术,提出了一种有效的DNN模型安全保护框架——chaopim。详细的实验结果表明,由于被盗模型的准确率很低,我们的框架可以有效地阻止攻击者正常使用DNN模型。与强大的Cortex-A53、Kryo-280、Intel-i5-8265U cpu和TITAN V GPU相比,ChaoPIM在各种DNN型号上都取得了相当大的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Positive and Negative Extra Clocking of LFSR Seeds for Reduced Numbers of Stored Tests Lightweight Hardware-Based Memory Protection Mechanism on IoT Processors Further Analysis of Laser-induced IR-drop Effective SAT-based Solutions for Generating Functional Sequences Maximizing the Sustained Switching Activity in a Pipelined Processor Application of Residue Sampling to RF/AMS Device Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1