Range invariant anomaly detection for LWIR polarimetric imagery

J. Romano, D. Rosario
{"title":"Range invariant anomaly detection for LWIR polarimetric imagery","authors":"J. Romano, D. Rosario","doi":"10.1109/AIPR.2014.7041931","DOIUrl":null,"url":null,"abstract":"In this paper we present a modified version of a previously proposed anomaly detector for polarimetric imagery. This modified version is a more adaptive, range invariant anomaly detector based on the covariance difference test, the M-Box. The paper demonstrates the underlying issue of range to target dependency of the previous algorithm and offers a solution that is very easily implemented with the M-Box covariance test. Results are shown where the new algorithm is capable of identifying manmade objects as anomalies in both close and long range scenarios.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present a modified version of a previously proposed anomaly detector for polarimetric imagery. This modified version is a more adaptive, range invariant anomaly detector based on the covariance difference test, the M-Box. The paper demonstrates the underlying issue of range to target dependency of the previous algorithm and offers a solution that is very easily implemented with the M-Box covariance test. Results are shown where the new algorithm is capable of identifying manmade objects as anomalies in both close and long range scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LWIR偏振图像距离不变异常检测
在本文中,我们提出了一个修改版本的以前提出的异常探测器的偏振图像。这个改进的版本是一个更自适应的,距离不变的异常检测器基于协方差差异检验,M-Box。本文论证了先前算法的距离与目标依赖的潜在问题,并提供了一个非常容易实现的M-Box协方差检验的解决方案。结果显示,新算法能够在近距离和远程场景中将人造物体识别为异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1