Automatic defect localization in VLSI circuits: A fusion approach based on the Dempster-Shafer theory

A. Boscaro, S. Jacquir, K. Sanchez, P. Perdu, S. Binczak
{"title":"Automatic defect localization in VLSI circuits: A fusion approach based on the Dempster-Shafer theory","authors":"A. Boscaro, S. Jacquir, K. Sanchez, P. Perdu, S. Binczak","doi":"10.23919/ICIF.2017.8009813","DOIUrl":null,"url":null,"abstract":"Defect localization in Very Large Integration Circuits (VLSI) requires to use multi-sensor information such as electrical waveforms, emission microscopy images and frequency mapping in order to detect, localize and identify the failure. Each sensor provides a specific kind of feature modeling the evidence. Thus, the defect localization in VLSI can be summarized as a problem of data fusion with heterogeneous and imprecise information. This study illustrates how to reproduce the human decision for modeling and fusing the different multi-sensor features by using the Demspter-Shafer theory. We propose not only an automatic decision rule for mass functions computing but also confidence intervals to quantify the final decision and to bring a decision help for the analysts expertise. Finally, a case of study is reported to attest the expert decision reproducibility.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Defect localization in Very Large Integration Circuits (VLSI) requires to use multi-sensor information such as electrical waveforms, emission microscopy images and frequency mapping in order to detect, localize and identify the failure. Each sensor provides a specific kind of feature modeling the evidence. Thus, the defect localization in VLSI can be summarized as a problem of data fusion with heterogeneous and imprecise information. This study illustrates how to reproduce the human decision for modeling and fusing the different multi-sensor features by using the Demspter-Shafer theory. We propose not only an automatic decision rule for mass functions computing but also confidence intervals to quantify the final decision and to bring a decision help for the analysts expertise. Finally, a case of study is reported to attest the expert decision reproducibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VLSI电路中的缺陷自动定位:基于Dempster-Shafer理论的融合方法
超大集成电路(VLSI)中的缺陷定位需要使用多传感器信息,如电子波形、发射显微镜图像和频率映射,以检测、定位和识别故障。每个传感器提供了一种特定的特征建模证据。因此,超大规模集成电路中的缺陷定位可以归结为异构和不精确信息的数据融合问题。本研究说明了如何利用Demspter-Shafer理论再现人类决策的建模和融合不同的多传感器特征。我们不仅提出了质量函数计算的自动决策规则,而且提出了量化最终决策的置信区间,为分析人员的专业知识提供决策帮助。最后,通过实例验证了专家决策的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1