Mathematical Essence and Structures of Feedback Neural Networks and Weight Matrix Design

Hongxing Li, C. L. P. Chen, Han-Pang Huang
{"title":"Mathematical Essence and Structures of Feedback Neural Networks and Weight Matrix Design","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH7","DOIUrl":null,"url":null,"abstract":"This chapter focuses on mathematical essence and structures of neural networks and fuzzy neural networks, especially on discrete feedback neural networks. We begin with review of Hopfield networks and discuss the mathematical essence and the structures of discrete feedback neural networks. First, we discuss a general criterion on the stability of networks, and we show that the energy function commonly used can be regarded as a special case of the criterion. Second, we show that the stable points of a network can be converted as the fixed points of some function, and the weight matrix of the feedback neural networks can be solved from a group of systems of linear equations. Last, we point out the mathematical base of the outer-product learning method and give several examples of designing weight matrices based on multifactorial functions. In previous chapters, we have discussed in detail the mathematical essence and structures of feedforward neural networks. Here, we study the mathematical essence and structures of feedback neural networks, namely, the Hopfield networks [l]. illustrates a single-layer Hopfield net with n neurons, where are outer input variables, which usually are treated as \" the first impetus \" , then they are removed and the network will continue to evolve itself. connection weights, wij = wji and wii=O. The activation functions of the neurons are denoted by cpi, where the threshold values are 8i.","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Neural Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781420057997.CH7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter focuses on mathematical essence and structures of neural networks and fuzzy neural networks, especially on discrete feedback neural networks. We begin with review of Hopfield networks and discuss the mathematical essence and the structures of discrete feedback neural networks. First, we discuss a general criterion on the stability of networks, and we show that the energy function commonly used can be regarded as a special case of the criterion. Second, we show that the stable points of a network can be converted as the fixed points of some function, and the weight matrix of the feedback neural networks can be solved from a group of systems of linear equations. Last, we point out the mathematical base of the outer-product learning method and give several examples of designing weight matrices based on multifactorial functions. In previous chapters, we have discussed in detail the mathematical essence and structures of feedforward neural networks. Here, we study the mathematical essence and structures of feedback neural networks, namely, the Hopfield networks [l]. illustrates a single-layer Hopfield net with n neurons, where are outer input variables, which usually are treated as " the first impetus " , then they are removed and the network will continue to evolve itself. connection weights, wij = wji and wii=O. The activation functions of the neurons are denoted by cpi, where the threshold values are 8i.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反馈神经网络的数学本质与结构与权矩阵设计
本章重点介绍神经网络和模糊神经网络的数学本质和结构,特别是离散反馈神经网络。我们首先回顾Hopfield网络,讨论离散反馈神经网络的数学本质和结构。首先,我们讨论了网络稳定性的一般判据,并证明了常用的能量函数可以看作是该判据的一个特例。其次,我们证明了网络的稳定点可以转化为某个函数的不动点,并且反馈神经网络的权矩阵可以由一组线性方程组求解。最后指出了外积学习方法的数学基础,并给出了基于多因子函数的权矩阵设计实例。在前面的章节中,我们详细讨论了前馈神经网络的数学本质和结构。在这里,我们研究反馈神经网络的数学本质和结构,即Hopfield网络[1]。举例说明了一个有n个神经元的单层Hopfield网络,其中是外部输入变量,通常被视为“第一推动力”,然后它们被移除,网络将继续自我进化。连接权值,wij = wji, wii=O。神经元的激活函数用cpi表示,其中阈值为8i。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Fuzzy Controllers Based on Variable Universes Data Preprocessing The Interpolation Mechanism of Fuzzy Control Flat Neural Networks and Rapid Learning Algorithms Foundation of Neuro-Fuzzy Systems and an Engineering Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1