Fast deployment and scoring of support vector machine models in CPU and GPU

Oscar Castro-López, Inés Fernando Vega López
{"title":"Fast deployment and scoring of support vector machine models in CPU and GPU","authors":"Oscar Castro-López, Inés Fernando Vega López","doi":"10.1145/3243127.3243133","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach for the fast deployment and efficient scoring of Support Vector Machine (SVM) models. We developed a compiler for transforming a formal specification of a SVM and generating source code in different versions of the C/C++ language. This effectively automates the deployment of SVM models and its integration into the operational software for its use. The proposed compiler generates efficient code to deploy SVM models in CPUs (single or multi-core) and in Graphics Processing Units (GPUs) through NVIDIA's Computed Unified Device Architecture (CUDA). We also present an empirical evaluation of our compiler's targets scoring a SVM model with a linear kernel. In our experiments we score a real dataset in batch mode at different scales. The results show that our C CUDA implementation performs better as data scale increases and it is approximately 38 times faster than the single-core implementation using single precision floating-point values.","PeriodicalId":244058,"journal":{"name":"Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3243127.3243133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present an approach for the fast deployment and efficient scoring of Support Vector Machine (SVM) models. We developed a compiler for transforming a formal specification of a SVM and generating source code in different versions of the C/C++ language. This effectively automates the deployment of SVM models and its integration into the operational software for its use. The proposed compiler generates efficient code to deploy SVM models in CPUs (single or multi-core) and in Graphics Processing Units (GPUs) through NVIDIA's Computed Unified Device Architecture (CUDA). We also present an empirical evaluation of our compiler's targets scoring a SVM model with a linear kernel. In our experiments we score a real dataset in batch mode at different scales. The results show that our C CUDA implementation performs better as data scale increases and it is approximately 38 times faster than the single-core implementation using single precision floating-point values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机模型在CPU和GPU上的快速部署和评分
本文提出了一种支持向量机(SVM)模型快速部署和高效评分的方法。我们开发了一个编译器,用于转换支持向量机的正式规范并生成不同版本的C/ c++语言的源代码。这有效地自动化了SVM模型的部署,并将其集成到操作软件中以供其使用。该编译器通过NVIDIA的计算统一设备架构(CUDA)生成高效的代码,在cpu(单核或多核)和图形处理单元(gpu)中部署SVM模型。我们还提出了一个经验评估我们的编译器的目标评分SVM模型与线性核。在我们的实验中,我们以批处理模式在不同的尺度上对真实数据集进行评分。结果表明,随着数据规模的增加,我们的C CUDA实现的性能更好,它比使用单精度浮点值的单核实现快大约38倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis Fast deployment and scoring of support vector machine models in CPU and GPU A language-agnostic model for semantic source code labeling Learning-based testing for autonomous systems using spatial and temporal requirements A deep learning approach to program similarity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1