Camera Calibration Method Based on Sine Cosine Algorithm

Zhihui Feng, Quan Liang, Zicheng Zhang, W. Ji
{"title":"Camera Calibration Method Based on Sine Cosine Algorithm","authors":"Zhihui Feng, Quan Liang, Zicheng Zhang, W. Ji","doi":"10.1109/PIC53636.2021.9687082","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of traditional camera calibration method, such as sensitivity to the initial values of camera model parameters and unstable calibration results. This paper proposes a camera calibration method based on sine cosine algorithm. After obtaining a certain initial value by Zhang's camera calibration method, use the sine cosine algorithm (SCA) to form the initial population in the field near the initial value, and perform iterative optimization. The average error between the actual projection point and the calculated projection point is the accuracy criterion. Using the volatility and periodicity of the sine function and cosine function to search and iterate, so that the solution can be oscillating towards the global optimum and achieve the purpose of optimization. Experiments have proved that the adaptive parameters and randomness parameters in the algorithm better balance the exploration and development capabilities of the algorithm. The improved algorithm has fewer parameters, simple structure, easy implementation, and fast convergence speed. The experiment proves that the camera calibration accuracy is effectively improved.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems of traditional camera calibration method, such as sensitivity to the initial values of camera model parameters and unstable calibration results. This paper proposes a camera calibration method based on sine cosine algorithm. After obtaining a certain initial value by Zhang's camera calibration method, use the sine cosine algorithm (SCA) to form the initial population in the field near the initial value, and perform iterative optimization. The average error between the actual projection point and the calculated projection point is the accuracy criterion. Using the volatility and periodicity of the sine function and cosine function to search and iterate, so that the solution can be oscillating towards the global optimum and achieve the purpose of optimization. Experiments have proved that the adaptive parameters and randomness parameters in the algorithm better balance the exploration and development capabilities of the algorithm. The improved algorithm has fewer parameters, simple structure, easy implementation, and fast convergence speed. The experiment proves that the camera calibration accuracy is effectively improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正弦余弦算法的摄像机标定方法
针对传统摄像机标定方法对摄像机模型参数初值敏感、标定结果不稳定等问题。提出了一种基于正弦余弦算法的摄像机标定方法。通过Zhang的摄像机标定方法获得一定的初值后,使用SCA算法在初值附近的区域形成初始种群,并进行迭代优化。实际投影点与计算投影点之间的平均误差是精度标准。利用正弦函数和余弦函数的波动性和周期性进行搜索迭代,使解向全局最优方向振荡,达到寻优的目的。实验证明,算法中的自适应参数和随机参数较好地平衡了算法的探索和开发能力。改进算法具有参数少、结构简单、易于实现、收敛速度快等优点。实验证明,该方法有效地提高了摄像机标定精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1