Monotonic cubic spline interpolation

G. Wolberg, Itzik Alfy
{"title":"Monotonic cubic spline interpolation","authors":"G. Wolberg, Itzik Alfy","doi":"10.1109/CGI.1999.777953","DOIUrl":null,"url":null,"abstract":"This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C/sup 2/ continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is to determine the smoothest possible curve that passes through its control points while simultaneously satisfying the monotonicity constraint. We first describe a set of conditions that form the basis of the monotonic cubic spline interpolation algorithm presented. The conditions are simplified and consolidated to yield a fast method for determining monotonicity. This result is applied within an energy minimization framework to yield linear and nonlinear optimization-based methods. We consider various energy measures for the optimization objective functions. Comparisons among the different techniques are given, and superior monotonic cubic spline interpolation results are presented.","PeriodicalId":165593,"journal":{"name":"1999 Proceedings Computer Graphics International","volume":"613 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Proceedings Computer Graphics International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1999.777953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C/sup 2/ continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is to determine the smoothest possible curve that passes through its control points while simultaneously satisfying the monotonicity constraint. We first describe a set of conditions that form the basis of the monotonic cubic spline interpolation algorithm presented. The conditions are simplified and consolidated to yield a fast method for determining monotonicity. This result is applied within an energy minimization framework to yield linear and nonlinear optimization-based methods. We consider various energy measures for the optimization objective functions. Comparisons among the different techniques are given, and superior monotonic cubic spline interpolation results are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单调三次样条插值
本文描述了用三次样条插值单调数据集的方法。插值三次样条在拟合数据方面很受欢迎,因为它们使用低阶多项式并具有C/sup /连续性,这一特性允许它们满足理想的平滑约束。不幸的是,同样的约束常常违反另一个理想的属性:单调性。这项工作的目标是确定通过其控制点的最平滑的曲线,同时满足单调性约束。我们首先描述了构成所提出的单调三次样条插值算法基础的一组条件。对这些条件进行了简化和整合,得到了一种快速确定单调性的方法。该结果在能量最小化框架内应用,以产生基于线性和非线性优化的方法。我们考虑了优化目标函数的各种能量度量。对不同插值方法进行了比较,得到了较好的单调三次样条插值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Homotopy and intellectual property Edge extraction for adaptive mesh construction Object reconstruction from slices for vision Interactive 3D landscape visualization: improved realism through use of remote sensing data and geoinformation Visualizing knowledge about virtual reconstructions of ancient architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1